

Rapid Assessment Report for Site 27, Building 221

Zone E Charleston Naval Complex

North Charleston, South Carolina

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888
Contract Task Order 0089

March 2000

TTNUS/TAL-00-025/0126/3.2

March 09, 2000

Project Number 0126

Mr. Paul Bristol
South Carolina Department of Health and Environmental Control
Groundwater Quality Section
Bureau of Water
2600 Bull Street
Columbia, South Carolina 29201-1708

Reference:

Clean Contract No. N62467-94-D0888

Contract Task Order No. 0089

Subject:

Final Rapid Assessment Report for

Site 27, Building 221

Charleston Naval Complex Charleston, South Carolina

Dear Mr. Bristol:

On behalf of the Department of the Navy, Southern Division, Naval Facilities Engineering Command, Tetra Tech NUS, Inc. is pleased to submit the Final Rapid Assessment Report for the referenced site at the Charleston Naval Complex.

If you have any questions regarding this plan or require further information, please contact me at (850) 385-9899.

Verytruly yours,

Paul E. Calligan, P.G. Task Order Manager

PC/dd

Enclosures (2)

c:

Mr. Gabriel Magwood, SOUTHDIV

Ms. D. Wroblewski (Cover Letter Only)

Mr. M. Perry/File (Unbound)

FOR SITE 27, BUILDING 221

ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0089

March 2000

PREPARED UNDER THE SUPERVISION OF:

PAUL CALLIGAN, P.G. TASK ORDER MANAGER TETRA TECH NUS, INC.

TALLAHASSEE, FLORIDA

APPROVED FOR SUBMITTAL BY:

whoblewski

DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

CERTIFICATION PAGE

I certify that the information contained in this report and on any attachments is true, accurate, and complete to the best of my knowledge, information, and belief.

Approved By:

Gregory D. Swanson, P.E. South Carolina Registration No. 17132 SCDHEC UST Site Rehabilitation Contractor Class I & II No. 24

TABLE OF CONTENTS

Section	<u>1</u>		<u>Page</u>
	EXEC	CUTIVE SUMMARY	ES-1
1.0	INTR	ODUCTION	1-1
	1.1	SITE DESCRIPTION	1-1
	1.2	SITE HISTORY	1-2
	1.3	RECEPTOR SURVEY RESULTS	
	1.4	REGIONAL GEOLOGY AND HYDROGEOLOGY	
2.0	ASSE	ESSMENT INFORMATION	2-1
	2.1	SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY	2-1
		2.1.1 Site Geology	2-1
		2.1.2 Site Hydrogeology	2-1
	2.2	ASSESSMENT RESULTS	2-2
	2.3	FIELD SCREENING ASSESSMENT	2-4
		2.3.1 Soil Vapor Assessment	2-4
		2.3.2 Soil Mobile Laboratory Results	2-4
		2.3.3 Groundwater Mobile Laboratory Results	
	2.4	CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER	2-5
	→	2.4.1 Chemicals of Concern in Soil	
		2.4.2 Chemicals of Concern in Groundwater	
	2.5	ANALYTICAL DATA	2-7
	2.6	AQUIFER CHARACTERISTICS AND EVALUATION	2-7
	2.7	FATE AND TRANSPORT	2-9
	2.8	PREDICTED MIGRATION AND ATTENUATION	2-9
	2.0	OF CHEMICALS OF CONCERN	2-9
	TIER		
3.0		1 and 2 EVALUATION	3-1
	3.1	COMPARISON OF ANALYTICAL RESULTS WITH RBSLs	
	3.2	SITE CONCEPTUAL EXPOSURE MODEL	
	3.3	EXPOSURE PATHWAY ANALYSIS	
		3.3.1 On-Site Commercial/Industrial Worker	
		3.3.2 On-Site Visitor	3-2
		3.3.3 On-Site Construction Worker	3-2
		3.3.4 On-Site Resident	3-3
		3.3.5 Off-Site Resident	3-3
		3.3.6 Surface Water	3-3
	3.4	IDENTIFICATION OF DATA REQUIREMENTS	3-3
	3.5	SITE-SPECIFIC TARGET LEVELS	3-3
		3.5.1 Groundwater SSTLs Protective of the On-Site Construction Worker	3-4
		3.5.2 Groundwater SSTLs Protective of Surface Water	3-5
		3.5.3 Selected SSTLs	3-7
	3.6	RECOMMENDATIONS	3-7
4.0	DEE	EDENICES	4.1

TABLE OF CONTENTS (Continued)

TABLES

- 1 GROUNDWATER ELEVATIONS
- 2 GROUNDWATER FIELD MEASUREMENTS
- 3 GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS
- 4 SUMMARY OF OVA SOIL SCREENING RESULTS
- 5 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL
- 6 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER
- 7 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL
- 8 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER
- 9 FATE AND TRANSPORT INPUT PARAMETERS
- 10 COMPARISON OF MAXIMUM CONCENTRATIONS TO RBSLS
- 11 EXPOSURE PATHWAY ASSESSMENT CURRENT USE
- 12 EXPOSURE PATHWAY ASSESSMENT FUTURE USE

FIGURES

- Site Location Map
- 2 Site Vicinity Map
- 3 Site Map Showing Sample Locations
- 4 Geologic Cross Section A to A'
- 5 Geologic Cross Section B to B'
- 6 Groundwater Potentiometric Surface Map, September 23, 1999
- 7 Naphthalene Concentrations in Groundwater Map
- 8 Lead (Pb) Concentrations in Groundwater Map
- 9 Total Chromium (Cr) Concentrations in Groundwater Map

APPENDICES

- A Underground Storage Tank Assessment Report UST 221
- B Geologic Boring Logs
- C Field Sampling Data Sheets
- D Soil and Groundwater Laboratory Analytical Data
- E Aquifer Characterization Graphs
- F RBCA Calculations

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) has completed a Rapid Assessment (RA) for Site 27 which formerly contained an underground storage tank (UST) system located adjacent to Building 221 at the Charleston Naval Complex (CNC), Zone E in Charleston, South Carolina. The UST (UST 221-1 or UST 221), a 280-gallon steel constructed tank, was a gravity fed holding tank used to store waste oil as part of an oil/water separator system located at Building 221. The RA was performed under the direction of the South Carolina Department of Health and Environmental Control's (SCDHEC's) Rapid Assessment Plan and approval letter dated November 4, 1998.

TtNUS performed the following actions during this assessment:

- Reviewed available Navy documents to identify potential sources and receptors for
 petroleum hydrocarbons in the vicinity, to evaluate public and private potable wells, to
 locate utilities line areas, to locate nearby surface water bodies, and to determine surface
 hydrology and drainage;
- Reviewed the previously prepared Underground Storage Tank Assessment Report for UST 221 to determine boring locations and monitoring well placements;
- Conducted a site survey to identify utilities and to construct a site plan;
- Performed direct push technology (DPT) investigation; field screened 7 soil samples for organic vapors using an organic vapor analyzer equipped with a flame ionization detector;
- Collected soil samples from one DPT boring for mobile lab screening analysis for benzene, toluene, ethylbenzene, total xylenes (BTEX), naphthalene, and diesel range organics (DRO) using U.S. Environmental Protection Agency (USEPA) Method 8020/8015M;
- Collected groundwater samples from seven DPT borings for mobile lab screening analysis for BTEX, naphthalene, and DRO using USEPA Method 8020/8015M;
- Used five existing shallow monitoring wells located at the site to determine the relative groundwater flow direction;
- Installed one permanent shallow monitoring well to a depth of approximately 12 feet below land surface (bls);
- Collected one soil sample for fixed-base laboratory analysis for BTEX and naphthalene
 using USEPA Method 8260, polynuclear aromatic hydrocarbons (PAHs) using USEPA
 Method 8270, total organic carbon (TOC) using USEPA Method 9060, total recoverable
 petroleum hydrocarbon (TRPH) using USEPA Method 9071A, and grain size analysis
 using American Society of Testing and Materials (ASTM) Method C-117 and C-136;

- Collected groundwater samples from the one newly installed shallow well, four existing shallow wells, and one deep well (including one duplicate sample) for fixed-base laboratory analysis for BTEX, methyl tertiary butyl ether (MTBE), ethylene dibromide (EDB or 1,2-dibromoethane), naphthalene using USEPA Method 8260, PAHs using USEPA Method 8270, eight specific metals (lead, arsenic, barium, cadmium, chromium, mercury, selenium, and silver)
- Collected groundwater samples from three wells for natural attenuation parameters analyzed in the field and in a fixed-base laboratory;
- Surveyed the top of casing elevations for each monitoring well and collected depth to groundwater measurements to confirm the groundwater flow direction.

Conclusion

On October 12, 1999, one soil sample was collected and analyzed at a fixed base laboratory for BTEX, MTBE, EDB, naphthalene, PAHs, metals, total organic carbon, total recoverable petroleum hydrocarbons, and grain size analysis. None of the constituents analyzed were detected.

On September 23, 1999, depth to groundwater measurements were recorded from the site monitoring wells (five existing wells and one new well). Based on the calculated water table elevations from each well, groundwater flow at the site is divided. Groundwater beneath the former UST-221 flows to the southeast, towards the Cooper River. Approximately 10 to 15 feet northwest of former UST-221, groundwater flows to the northwest, away from the Cooper River. The northwest groundwater flow direction may be the result of influence by a storm drain utility line located between buildings 221 and 56. However, the influence on the water table from the storm drain utility line was not investigated further during this assessment. No free product was detected in any existing or new monitoring well at the site during this assessment.

On September 23, 1999, seven groundwater samples (including one duplicate) were collected and analyzed at a fixed base laboratory for BTEX, MTBE, EDB, naphthalene, PAHs, metals. In addition, groundwater samples were collected from three wells and analyzed for the following natural attenuation parameters: dissolved oxygen, alkalinity, carbon dioxide, manganese, ferrous iron, nitrite, sulfide, nitrogen/nitrate, sulfate and methane. Nitrogen/nitrate, sulfate, and methane were analyzed in a fixed base laboratory, but the remaining natural attenuation parameters were analyzed in the field at the time of sample collection. No BTEX constituents, MTBE, or PAHs, with the exception of naphthalene, were detected in any of the groundwater samples. Naphthalene was detected at a concentration exceeding its RBSL in one groundwater sample.

Lead (Pb) was detected at concentrations exceeding it's RBSL in three groundwater samples; one was a duplicate sample. Total chromium was detected at a concentration exceeding its RBSL in one sample. No other constituents analyzed were detected in the groundwater samples, including the deep, vertical delineation well (existing well CNC27X-04D).

The vertical and horizontal extent of petroleum hydrocarbon impact to soil and groundwater in the vicinity of the former UST system at Building 221 has been delineated.

The Site Conceptual Model identified two possible future receptors: a construction worker in a utility trench and the Cooper River. Pathways for the construction worker include (1) possibly ingesting, having dermal contact with, or inhaling volatilized vapors from the groundwater in the utility trench, and (2) possibly ingesting or having dermal contact with soil within the trench. The pathway for the Cooper River is groundwater migration to the river from the site.

The minimum RBSL for naphthalene and chromium are greater than the greatest onsite concentration of each CoC detected in site groundwater. Therefore, a construction worker in a utility trench exposed to groundwater containing naphthalene and/or chromium from Site 27 is not at risk from exposure. However, the construction worker is at risk if exposed to lead in the groundwater. The current concentrations of naphthalene, lead, and total chromium in monitoring well CNC27X-03 are below the calculated SSTLs for affecting the Cooper River. Therefore, the Cooper River is not at risk because of the naphthalene, lead, and total chromium concentrations in groundwater at the site.

The maximum concentrations for naphthalene and chromium found onsite are less than the respective minimum SSTLs, therefore, naphthalene and chromium in groundwater do not pose a threat to the identified receptors at the site. However, the maximum concentration for lead found on site exceeds it's the minimum SSTL, therefore, lead in groundwater poses a threat to a construction worker in a utility trench exposed to groundwater.

<u>Recommendation</u>

Because concentrations for lead in groundwater exceed the minimum SSTL protective of a construction worker in a utility trench, Tetra Tech NUS, Inc. recommends preparing an Active Corrective Action Plan.

1.0 INTRODUCTION

Site 27 formerly contained an underground storage tank (UST) system located adjacent to Building 221 at the Charleston Naval Complex (CNC), Zone E in Charleston, South Carolina. The UST (UST 221-1 or UST 221), a 280-gallon steel constructed tank, was a gravity fed holding tank used to store waste oil as part of an oil/water separator system located at Building 221. This Rapid Assessment (RA) was performed by Tetra Tech NUS, Inc.'s (TtNUS's) Tallahassee, Florida, office, located at 1401 Oven Park Drive, Suite 102, Tallahassee, Florida 32312 (telephone number 850-385-9899) on behalf of the U.S. Navy Southern Division (SOUTHDIV) Naval Facilities Engineering Command (NAVFAC), 2155 Eagle Drive, North Charleston, South Carolina (telephone number 843-820-7307). Authorization to conduct the RA for the site was issued by NAVFAC under Contract Task Order (CTO) 0068. The RA was performed under the direction of the South Carolina Department of Health and Environmental Control's (SCDHEC's) Rapid Assessment Plan approval letter dated November 4, 1998. Fieldwork necessary to complete the RA was performed from May to October 1999, and was interrupted twice during this period due to approaching hurricanes (Dennis and Floyd.)

1.1 SITE DESCRIPTION

The CNC is in the city of North Charleston, on the west bank of the Cooper River in Charleston County, South Carolina, as shown on Figure 1. This installation consists of two major areas: an undeveloped dredge materials area on the east bank of the Cooper River on Daniel Island in Berkley County, and a developed area on the west bank of the Cooper River. The developed portion of the base is on the peninsula bound on the west by the Ashley River and on the east by the Cooper River. The site is located within the developed portion of the base as shown on Figure 1.

The area surrounding CNC is "mature urban," having long been developed with commercial, industrial, and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. A site vicinity map, which exhibits adjacent properties and structures, vicinity roads, current utilities, and vicinity surface drainage, is included as Figure 2.

Building 221 is a former pickling plant and galvanizing shop located inside the Controlled Industrial Area (CIA) of the Charleston Naval Shipyard (now known as the CNC). Building 221 was part of Building 56, the Pipe Shop Area. The oil/water separator and tank system at Building 221 site was part of a steam-cleaning pad. The pad was used for cleaning oily and/or greasy parts and components. A small catch basin in the pad drained into the oil/water separator. In 1983-1984, the operation was shut down. The site is currently situated approximately 200 feet from the Cooper River [Supervisor of Ship Building,

Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston (SPORTENDETCHASN), 1998].

1.2 SITE HISTORY

In 1901, the U.S. Navy acquired 2,250 acres near Charleston to build a shipyard and the first naval officer was assigned duty in early 1902. Subsequently, buildings and a dry dock were constructed in the Naval Yard. The dry dock was completed in 1909 along with several other brick buildings and the main power plant, which is still in operation today. The first ship was placed in dry dock and work began on fleet vessels in 1910. World War I brought about an expansion of the yards, facilities, land area, and work force. The yard built two gunboats, several submarine chasers, and tugs in addition to performing repairs and other services to the fleet. In 1933, building activity had increased principally in construction of several Coast Guard tugs, a Coast Guard cutter, and a Navy gunboat, creating the need for more facilities and a much larger work force. In 1943 civilian work force peaked with almost 26,000 employees divided among three daily shifts. In 1956, construction began on piers, barracks, and buildings for mine warfare ships and personnel. Later in the decade, the facility became a major homeport for combatant ships and submarines of the U.S. Atlantic Fleet [Ensafe/Allan & Hoshall, Inc. (E/A&H), 1996].

In 1993, major cuts in defense spending, as a result in part to the end of the cold war, caused CNC to be added to the list of bases scheduled for closure under the Defense Base Realignment and Closure Act (BRAC). BRAC regulates the closure and transition of property back to the community (E/A&H, 1996). With the scheduled closure of the base, operations were scaled back and environmental cleanup proceeded to make the property available for redevelopment after closure. As part of the environmental cleanup process, the UST at Building 221 was removed and the tank closure completed on June 18, 1996.

Between June 14 and 18, 1996, UST 221 was removed, cleaned, and recycled as scrap metal. At the time of the UST removal, no corrosion, pitting, or holes were found in the tank. The UST system piping was constructed of steel and ran from the UST to the separator. The piping from the vault to the building was removed during the closure. The pipes were mildly corroded, but overall, were considered to be in good condition. However, the pipe feed from the separator to the UST had a loose mechanical connection at the UST (SPORTENDETCHASN, 1998).

During the removal of the tank, no petroleum contamination or odors were identified in excavated soils or in the soil samples collected during the tank removal. The Underground Storage Tank Assessment Report for UST 221 is included in Appendix A.

1.3 RECEPTOR SURVEY RESULTS

A survey of the site vicinity was conducted by TtNUS personnel to identify potential receptors for petroleum hydrocarbon contamination. The site plan (Figure 2) depicts the public utilities located within 250 feet of the former UST 221 study area. Specific information concerning the depth of utilities below land surface is currently unavailable. However, according to facility personnel, utility lines are typically located approximately 2 to 6 feet below land surface (bls) (SPORTENVDETCHASN, 1999). The following utility receptors were located:

- Sanitary Sewer: A main sanitary sewer line is located north of Building 221, beneath Second Street. The main line extends from the southwest, at the intersection of Second Street and Avenue B, to the northeast, to the intersection of Second Street and Roe Avenue. This main line then extends southeast towards Pier "C", then bends 90 degrees to the southwest running to the south of Building 221. The sanitary sewer line from Building 221 ties into the main line from the north side of the building.
- Water Utility: A potable water utility line is located to the north, west, and south of Building 221. A
 water line is also located to the east, next to Building 74, which is immediately adjacent to and east of
 Building 221. The water utility line for Building 221 ties into the main distribution line from the north
 side of the building.
- Electrical Utility: An electrical utility line is located to the north and south of Building 221. An electrical
 line is also located to the east, next to Building 74, which is immediately adjacent to and east of
 Building 221. The electrical utility line for Building 221 ties into the main distribution line from the
 northeast corner of the building.
- Storm Drain Utility: A storm drain line is located to the north, west and east of Building 221. The storm drain lines to the east of Building 221 are located between Buildings 221 and 74 and east of Building 74. Building 74 is located east of and immediately adjacent to Building 221. Based on the utilities shown in Figure 2, it appears that a storm drain line originates from Building 221 carrying runoff water draining from the east side of the building extending north to the main distribution line.
- Compressed Air Utility: A compressed air line is located to the north and south of Building 221. The compressed air line does not extend to Building 221.

- Steam Utility: A steam line is located to the north and south of Building 221. A steam line is also
 located to the east, next to Building 74, which is immediately adjacent to and east of Building 221.
 The steam line for Building 221 ties into the main distribution line from the south of the building.
- Gas Utility: No gas utility lines are shown in Figure 2, nor was any line identified in the field.

A survey of groundwater users within a 7-mile radius of CNC was performed for the Final RCRA Facility Investigation Report for Zone E (E/A&H, 1996). According to this report, a survey of groundwater users within a 7-mile radius of CNC was conducted by the South Carolina Water Resources Commission to ascertain the extent of any shallow groundwater usage. Results of the water use investigation revealed that no drinking water wells, which utilize the shallow aquifer, are located within a 4-mile radius of CNC. Irrigation wells were not identified within 1,000 feet of the site. Numerous monitoring wells are located within 1,000 feet of the site. The nearest surface water body to UST 221 is in Pier "C" located on the Cooper River, approximately 150 feet to the south.

There are no city, county, or state zoning ordinances, as the federal government currently owns the property. Information concerning zoning ordinances was obtained from the SOUTHDIV Remedial Project Manager (Mr. Gabriel Magwood) located at 2155 Eagle Drive, North Charleston, South Carolina (telephone number 843-820-7307).

1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY

CNC is located in Charleston County, South Carolina, in the Lower South Carolina Coastal Plain Physiographic Province on the Cooper River side of the Charleston Peninsula. The peninsula is formed by the confluence of the Cooper and Ashley Rivers. Topography in the area is typical of the South Carolina lower coastal plain and is characterized by having low-relief plains broken by the meandering streams and rivers, flowing toward the coast past occasional marine terrace escarpments (E/A&H, 1996).

The geology of the Charleston area is typical of the southern Atlantic Coastal Plain. Cretaceous-age and younger sediments thicken seaward and are underlain by older igneous and metamorphic basement rock. Surface exposures consist of recent or Pleistocene sands, silts, and clays of high organic content referred to as the Wando Formation (E/A&H, 1996). Underlying the Wando Formation, increasing with age, are the Oligocene-age Cooper Group and the Eocene—age Santee Limestone. The Cooper Group is comprised of the Ashley, Parkers Ferry, and Harleyville Formations. The formation of particular importance in the Cooper Group is the Ashley Formation, which was formerly referred to as the Cooper Marl in most regional geologic literature. In more recent geologic nomenclature, the name "Cooper" has been given to a group of formations including the Ashley Formation, a pale green to olive-brown, sandy

phosphoric limestone or marl, which is locally muddy and/or sandy. The Ashley Formation in the vicinity of Charleston is encountered at a depth of approximately 30 to 70 feet bls. The top of the Ashley Formation has been reported to be associated with an erosional basin and the entire Cooper Unit, including the Ashley Formation, is indicated to be approximately 300 feet thick (E/A&H, 1996).

Groundwater occurs under water table or poorly confined conditions within the recent or Pleistocene deposits overlying the Ashley Formation of the Cooper Group. Transmissivity in the Pleistocene aquifer is generally less than 1,000 feet per day and well yields are variable, ranging from 0 to 200 gallons per minute (gpm). This groundwater contains high concentrations of iron and is commonly acidic at shallow depths (E/A&H, 1996).

The Cooper Group is hydrogeologically significant mainly because of its low permeability. In most locales, its sandy, finely granular limestone produces little or no water, but instead acts as confining material causing artesian conditions in the underlying Santee Limestone. Yields from wells in the Santee are usually less than 300 gpm (E/A&H, 1996).

2.0 ASSESSMENT INFORMATION

2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY

2.1.1 Site Geology

Seven direct push soil borings (CNC27-B01 through CNC27-B07) were advanced at Site 27 under the supervision of a TtNUS geologist between May 26 and July 8, 1999, as shown in Figure 3. These borings were constructed from land surface to a maximum depth of 8 feet bls and provided soil samples to characterize the subsurface lithology. On August 4, 1999, one shallow monitoring wells (CNC27-M01) was installed to a depth of 12 feet bls. During installation grab soil samples were collected to describe the subsurface lithology. Since five wells at the site were installed as part of previous activities, these wells were used in this assessment. The previous well identification numbers, TtNUS's existing well identification numbers, and the locations of each existing well and new well are shown in Figure 4.

Based on lithologic descriptions from the soil borings and monitoring well, the subsurface soil generally consists of interlayers of light brown to dark brown to grey colored silty sand, silty clay, and sandy clay near the surface to a depth of approximately 12 feet bls (see Figures 5, 6, and 7). Boring logs are presented in Appendix B.

2.1.2 Site Hydrogeology

Since five existing shallow wells were located at the site, it was not necessary to install temporary piezometers. The well identification numbers for the existing wells used by TtNUS are shown in the table below with their existing well identification number.

TtNUS Well I.D.	Existing Well I.D.
CNC27X-03	NBCE-065-003
CNC27X-04	NBCE-065-004
CNC27X-04D	NBCE-065-004D
CNC27X-05	NBCE-065-005
CNC27X-07	NBCE-065-007

One shallow monitoring well, CNC27-M01, was installed as part of this RA investigation, as shown in Figure 4. The shallow monitoring well was completed to a depth of 12 feet bls. The shallow monitoring well was completed using 10 feet of 0.01-inch machine-slotted, Schedule 40 polyvinyl chloride (PVC) screen that bracketed the water table. A well construction log for this monitoring well is presented in Appendix B. At the completion of the well installation activities, each monitoring well location (new and existing) and the top of casing elevation was surveyed by a South Carolina Registered Professional Surveyor.

Groundwater in shallow wells at Site 27 was encountered at depths ranging from approximately 1.9 to 5.5 feet bls during the RA investigation. The recorded water-level data collected during the RA are presented in Table 1 and the water-level field data sheet is presented in Appendix C. Groundwater elevation measurements were recorded from the site monitoring wells prior to groundwater sampling on September 23, 1999. Figure 8 presents the groundwater potentiometric surface measurements recorded on September 23, 1999. As shown in Figure 8, the potentiometric surface map depicts a groundwater flow divide with existing well CNC27X-03 (NBCE-065-003) at the high point. Southeast of well CNC27X-03, groundwater flows to the southeast past former UST-221, towards the Cooper River. Approximately 10 to 15 feet northwest of well CNC27X-03, groundwater flows to the northwest, away from former UST-221 and the Cooper River. The northwest groundwater flow direction may be the result of influence by a storm drain utility line located between buildings 221 and 56. However, the influence on the water table from the storm drain utility line was not investigated further during this assessment.

As part of the Final RFI Report for Zone E (E/A&H, 1996), a tidal influence investigation was conducted. The objective of the investigation was to provide long-term water level monitoring to determine the effects of the tidal fluctuation on wells and groundwater flow throughout Zone E. During the 4-day tidal study, water levels were recorded in 19 wells throughout Zone E. Measurements were recorded every hour using data loggers. The 4-day period spanned nine high and nine low tide cycles.

Results of the tidal survey identified a maximum fluctuation in shallow monitoring wells of approximately 1 to 2 feet. Monitoring wells located closer to the tidal source were influenced more by tidal changes than wells located on the peninsula. The heterogeneity of the aquifer material may limit or accentuate the tidal response in some wells. Tidal influence from Shipyard Creek appears to be greater than that of the Cooper River (possibly because of the quay wall along the Cooper River). The report concluded that the minimal fluctuations in the groundwater levels were not expected to play a significant role in contaminant transport in any direction other than that determined by the natural groundwater gradient (E/A&H, 1996).

2.2 ASSESSMENT RESULTS

Seven soil borings were completed as part of the screening portion of the soil investigation at Site 27. One soil boring was completed to collect a soil sample for analysis at a fixed-base laboratory to confirm the Chemicals of Concern (CoC). The soil borings for screening evaluation were completed using a DPT rig. Samples were collected to evaluate subsurface soil vapors, soil contaminant concentration (via a mobile laboratory), and groundwater contaminant concentrations (via a mobile laboratory). The soil sample analyzed in the mobile laboratory was collected from a depth of approximately 1-2 feet bls. The soil and groundwater samples collected for mobile laboratory screening were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), naphthalene, and diesel range organics (DRO).

On October 12, 1999, one soil sample for CoC evaluation was collected and analyzed at a fixed base laboratory. This soil sample was analyzed for BTEX, methyl tertiary butyl ether (MTBE), ethylene dibromide (EDB or 1,2-dibromoethane) and naphthalene using U.S. Environmental Protection Agency (USEPA) Method 8260 and polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270. In addition, this soil sample was analyzed for metals using standard USEPA methods, total organic carbon (TOC) using USEPA Method 9060, total recoverable petroleum hydrocarbons (TRPH) using USEPA Method 9071A, and grain size analysis using sieve and hydrometer analysis. The sample collection was conducted in accordance with the SCDHEC guidance document "Standard Limited Assessment" (June 1997). Lithologic logs for each soil boring are presented in Appendix B. The soil boring locations are shown on Figure 3, and the soil vapor assessment results are presented in Section 2.3.1.

On September 23, 1999, groundwater samples were collected from five existing wells and one new well. Groundwater sampling was conducted using a peristaltic pump and low flow, quiescent techniques. The monitoring wells were sampled in accordance with SCDHEC's guidance document "South Carolina Risk-Based Corrective Action for Petroleum Releases" (January 1998). Each well was purged of three to six well volumes or until water quality parameters of pH, temperature, and specific conductivity stabilized. The field data sheets are included in Appendix C, and a summary of the field parameter measurements is presented in Table 2.

Groundwater samples were analyzed for BTEX, MTBE, EDB, and naphthalene using USEPA Method 8260 and PAHs using USEPA Method 8270. Groundwater samples were also analyzed for metals using standard USEPA methods. In addition, groundwater samples from three of the wells (CNC27M-01, CNC27X-05, and CNC27X-07) were analyzed for the following natural attenuation parameters: dissolved oxygen, alkalinity, carbon dioxide, manganese, ferrous iron, nitrite, sulfide, nitrogen/nitrate, sulfate and methane. Nitrogen/nitrate, sulfate and methane were analyzed in a fixed base laboratory, and the

remaining natural attenuation parameters were analyzed in the field at the time of sample collection. Groundwater natural attenuation field data are summarized in Table 3, and the field data sheets are included in Appendix C.

2.3 FIELD SCREENING ASSESSMENT

2.3.1 Soil Vapor Assessment

Seven soil borings were completed to evaluate soil vapors as part of the soil screening assessment at Site 27. Total organic vapor headspace concentrations were measured from soil samples using a flame ionization detector (FID). The measurements were recorded periodically from land surface to the termination depth of each boring. Each boring was terminated once the water table or saturated soil conditions were encountered. Due to some equipment malfunctions during this assessment, organic vapors were not measured in three of the borings. Table 4 summarizes the soil vapor screening results, and Figure 3 shows the soil boring locations.

Soil vapor concentrations ranged from non-detect to greater than (>) 5,000 parts per million (ppm). The highest vapor concentrations (> 5,000 ppm) were detected in soil borings CNC27-B01 and CNC27-B02, both at the 4 to 7-foot depth interval. The highest concentration of vapors detected in soil from the remaining sample locations did not exceed 500 ppm. Due to equipment malfunctions, organic vapor concentrations were not measured in soil borings CNC27-B04, CNC27-B06, and CNC27-B07. The soil vapor assessment was used as a screening method to assist in identifying locations for the collection of soil samples and groundwater monitoring wells.

2.3.2 <u>Soil Mobile Laboratory Results</u>

One soil sample collected from boring CNC27-B01 and was analyzed in a mobile laboratory for BTEX, naphthalene and DRO using USEPA Method 8020/8015M. This soil sample was selected based on the soil vapor screening results with the additional criteria that the sample originate in the vadose zone, above the water table. Only one soil sample was collected for analysis in the mobile laboratory because of the following: 1) boring CNC27-B01 was one of two borings containing the highest concentration of organic vapors, 2) boring CNC27-B01 was located adjacent to the former location of UST-221, and 3) the soils in all of the soil boring locations were saturated to a depth of approximately 1-2 feet bls.

None of the constituents analyzed were detected in the soil sample collected from boring CNC27-B01. Table 5 presents a summary of the soil analytical data from the mobile laboratory.

The mobile laboratory soil analysis was used as a screening method to assist in identifying locations for collection of soil samples for fixed base laboratory analysis and locations for groundwater monitoring wells. Soil sample and monitoring well locations were determined in part based on these data.

2.3.3 Groundwater Mobile Laboratory Results

A groundwater sample was collected from each of the 7 soil boring locations and was analyzed by a mobile laboratory for BTEX, naphthalene, and DRO using USEPA Method 8020/8015M. Table 6 summarizes the groundwater analytical data from the mobile laboratory.

As shown in Table 6, no BTEX or DRO constituents were detected in any of the mobile laboratory groundwater samples. Naphthalene was detected in only two groundwater samples at concentrations ranging from 117 µg/L to 28 µg/L with the highest concentration detected in boring CNC27-B01 which was screened from 4 to 7 ft. bls. Naphthalene was not detected in any of the remaining groundwater samples.

The mobile laboratory groundwater analysis was used as a screening method to assist in identifying locations for permanent groundwater monitoring wells.

2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER

2.4.1 Chemicals of Concern in Soil

One subsurface soil sample was collected from boring CNC27-B07 for determination of CoCs. As requested by SCDHEC, the naphthalene concentrations detected in the soil sample shown in Table 7 are actually total naphthalene concentrations. The total naphthalene concentration value was derived by adding the naphthalene concentration detected using EPA Method 8260 with the 2-methylnaphthalene concentration detected using EPA Method 8270, regardless of the practical quantification limit for each method. The RBSL for sandy soil was used based on a grain size analysis completed on sample 27SLB0701 (boring CNC27-B07 at the 1-2 ft. depth interval) indicating a sandy soil matrix.

No BTEX constituents, naphthalene or PAHs were detected at the method practical quantification limit in the fixed-base laboratory sample. The soil boring location is shown on Figure 3, and Table 7 summarizes the CoCs detected in the soil sample. Soil analytical reports and grain size analysis reports are provided in Appendix D. Since none of the constituents analyzed were detected in the soil sample, it was not necessary to include a figure showing constituents detected in soil.

2.4.2 <u>Chemicals of Concern in Groundwater</u>

Seven groundwater samples (including one duplicate sample) were collected from the Site 27 area for determination of CoCs. The groundwater samples were collected from the five existing wells (four shallow wells and one deep well) and the newly installed shallow well. The monitoring well locations are shown on Figure 3, and Table 8 summarizes the CoCs detected in the groundwater samples. As previously described, the naphthalene concentrations detected in the groundwater samples shown are total naphthalene concentrations. The total naphthalene concentration value was derived by adding the naphthalene concentration detected using EPA Method 8260 with the 2-methylnaphthalene concentration detected using EPA Method 8270.

As shown in Table 8, no BTEX constituents, MTBE, or PAHs were detected at the method practical quantification limit in any of the fixed-base laboratory samples. Naphthalene was detected at a concentration of 7 μ g/l and 17 μ g/l in the groundwater samples collected from wells CNC27X-04 and CNC27X-03, respectively. The naphthalene concentration of 17 μ g/l in well CNC27X-03 slightly exceeds naphthalene's RBSL in groundwater of 10 μ g/l.

In addition to the organic analyses, inorganic (metals) parameters were detected in groundwater samples collected from the wells at Site 27. Lead (Pb) was detected at concentrations of 17.5 μ g/l, 42.5 μ g/l, and 675 μ g/l in the groundwater samples collected from wells CNC27M-01, CNC27M-01D (a duplicate sample from well CNC27M-01), and CNC27X-03. All of the concentrations detected in these wells exceed lead's RBSL in groundwater of 15 μ g/l. Total chromium was detected at a concentration of

133 μ g/l in the groundwater sample collected from well CNC27M-03, exceeding total chromium's RBSL in groundwater of 100 μ g/l. No other inorganic parameters analyzed were detected at the method practical quantification limit in these samples or in the groundwater samples collected from the remaining wells.

Groundwater analytical reports are provided in Appendix D. Figures 7, 8, and 9 illustrate the groundwater areal distribution of naphthalene, lead, and total chromium, respectively, for the September 23, 1999, sampling event.

2.5 ANALYTICAL DATA

All analytical data from the June 1996 Underground Storage Tank Assessment Report are presented in Appendix A. Soil analytical data generated during this RA are summarized in Tables 4 and 7. Groundwater analytical data generated during this RA are summarized in Tables 5 and 8. The soil and groundwater analytical reports from the fixed-base laboratory are included in Appendix D.

2.6 AQUIFER CHARACTERISTICS AND EVALUATION

Groundwater levels were measured from the site monitoring wells on September 23, 1999. As shown in Figure 8, the potentiometric surface map depicts a groundwater flow divide trending north-northeast to south-southwest, where existing well CNC27X-03 (NBCE-065-003) is at the high point. Southeast of well CNC27X-03, groundwater flows to the southeast beneath former UST-221, towards the Cooper River. Approximately 10 to 15 feet northwest of well CNC27X-03, groundwater flows to the northwest, away from former UST-221 and the Cooper River. The northwest groundwater flow direction may be the result of influence by a storm drain utility line located between buildings 221 and 56. However, the influence on the water table from the storm drain utility line was not investigated further during this assessment.

The hydraulic gradients for this site was calculated between monitoring wells CNC27M-03 / CNC27M-07 (representing the southeast flow) and CNC27M-03 / CNC27M-05 (representing the northwest flow) using the water table elevation data measured on September 23, 1999. Based on the September 23, 1999, data, the calculated hydraulic gradient to the southeast is 0.0135 feet per foot (ft/ft) and the hydraulic gradient to the northwest is 0.0113 ft/ft, with the average hydraulic gradient at the site being 0.0124 ft/ft.

As part of the Final RCRA Facility Investigation (RFI) Report for Zone E, rising and falling head slug tests were conducted on 20 shallow monitoring wells throughout Zone E to determine the hydraulic conductivity of the surficial aquifer (E/A&H, 1996). The Final RCRA Facility Investigation Report for

Zone E is referenced since Site 27 is located within Zone E. Slug tests were conducted by instantaneously adding (falling head) or removing (rising head) a volume (slug) of water from the well and measuring the recovering water level with a data logger. A hydraulic conductivity value was then calculated for the rising head test and for the falling head test. The average hydraulic conductivity for each well was determined by calculating the geometric mean of the rising and falling head values. Because hydraulic conductivity data are lognormally distributed, the geometric mean was determined to be the most representative measure of central tendency.

The well construction details and boring logs for each well tested during the RFI were reviewed to determine which wells were most representative of the conditions present at Site 27. To make this determination the screened interval, lithology, and proximity to the site were evaluated. Based on this evaluation, monitoring well NBCE-065-001 was selected as the most representative well. NBCE-065-001 is located approximately 190 feet north (sidegradient) of the former location of UST-221 and is completed to a depth of approximately 12.5 feet with a 9-foot screened interval. This well was selected because it was one of the existing wells located in the vicinity of the former UST system. The geometric mean of the

rising and falling head conductivities for NBCE-065-001 was 3.8 feet per second (ft/sec) or 32.6 feet per day (ft/day).

Potential movement of groundwater at the site may be described in terms of transportation by natural flow system in the saturated zone, assuming groundwater flow follows Darcy's Law. Darcy's Law may be expressed as:

$$V = \left(\frac{K}{n}\right) x i$$

where:

V = average velocity

K = hydraulic conductivity = 32.6 ft/day

n = effective porosity = 0.55

[from sieve results of 40.7% sand & 0.8 clay and Figure C1 in SCDHEC, 1998]

i = average hydraulic gradient measurement = 0.0124 ft/ft

therefore:

$$V = \left(\frac{32.6 \text{ ft/day}}{0.55}\right) \times 0.0124 \text{ ft/ft}$$

$$V = 0.735 \, \text{ft/day}$$

In summary, the seepage velocity of the surficial aquifer was calculated to be approximately 268 feet per year based on a hydraulic conductivity of 0.32.6 ft/day, a hydraulic gradient of 0.0124 ft/ft, and a porosity of 55 percent for sandy soil. Aquifer characterization graphs are provided in Appendix E.

2.7 FATE AND TRANSPORT

The Domenico Dilution/Attenuation Model was the fate and transport model used to determine groundwater site-specific target levels (SSTLs) in the risk analysis. The Domenico Model is presented in the SCDHEC guidance document, South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC 1998). This model is very conservative in that it assumes an infinite mass, areal source condition through which groundwater flows. The model incorporates biological decay effects through a first-order decay process, however, this mechanism was ignored because SCDHEC guidance specifies that the decay rate must be assumed to be zero if site-specific decay rates have not been determined.

The impacted groundwater source area was modeled as 50 feet (15.00 meters) wide and 6.56 feet (2.0 meters) deep; these values are conservative defaults suggested by the American Society for Testing Materials (ASTM) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (ASTM, 1997). The maximum source concentrations are assumed to exist throughout the source area, further compounding the conservatism of the estimate.

Site-specific data were used for saturated hydraulic conductivity, hydraulic gradient, porosity, and fraction of organic carbon in soil (1.17E-04 m/sec, 0.0124 ft/ft, 0.47 cm³/cm³, and 1.75E-3 g-C/g-soil, respectively). The SCDHEC default value for soil bulk density (1.45 g/cm³) in sandy soil was used.

The following estimates of dispersivity were used in the Domenico Model as given in SCDHEC (1998):

Parameter	Estimate
Longitudinal Dispersivity, α _x	x/10, where x= distance between the point of
	exposure and the source or compliance point
Transverse Dispersivity, α _y	α _x /3
Vertical Dispersivity, α _z	α _x /20

Table 9 summarizes fate and transport parameters used in modeling the SSTLs.

2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN

Groundwater flow at the site is divided. Southeast of well CNC27X-03, groundwater flows to the southeast beneath former UST-221, towards the Cooper River. Approximately 10 to 15 feet northwest of former UST-221, groundwater flows to the northwest, away from former UST location and the Cooper River. The northwest groundwater flow direction may be the result of influence by a storm drain utility line located between buildings 221 and 56. The current extent of groundwater impact, where RBSLs are exceeded, is

limited to concentrations of naphthalene, lead, and total chromium in well CNC27X-03, and concentrations of lead in well CNC27M-01

The Domenico Model was used to predict the distance at which the tip of the plume is attenuated to SCDHEC RBSLs in 10 and 20 years without using degradation due to biological decay. This was done by adjusting the time to 10 years (3.15x10⁸ sec) and 20 years (6.31x10⁸ sec) and solving for distance (x) by trial and error. The source was assumed to be well CNC27X-03. The distance was changed until the required distance that is necessary for the concentration to attenuate to the RBSLs was determined. The table below shows the model estimates after 10 and 20 years for migration of naphthalene, lead, and total chromium using their respective RBSLs as the indicator of the downgradient plume edge.

Domenico Model Time Period	CoC	Estimated Distance Traveled (feet)	Time Period Equilibrium Reached (years)
10 year	Naphthalene	65	3.9
	Lead	420	3.5
	Total Chromium	51	0.5
20 year	Naphthalene	65	3.4
	Lead	420	3.5
	Total Chromium	51	0.5

All examined constituents reach equilibrium prior to the ten-year period used in the initial calculations. The maximum distance traveled by total chromium is approximately 50 feet after approximately 0.5 years. Naphthalene and lead both reach equilibrium after 3-4 years of migration. According to the calculations, naphthalene, lead, and chromium will migrate from Site 27 to the Cooper River within 10 years. The Cooper River is approximately 75-100 feet southeast of Site 27. The Domenico Model calculations are presented in Appendix F.

3.0 TIER 1 and 2 EVALUATION

3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs

Soil CoC concentrations were below the RBSLs for leaching in sandy soils and dermal contact and ingestion of surficial soil. Therefore, no further evaluation of the risks of soil contamination is necessary.

However, CoC concentrations in two groundwater samples exceeded the RBSLs and are shown in the following table. The groundwater RBSLs are presented in the SCDHEC guidance document, *South Carolina Risk-Based Corrective Action for Petroleum Releases* (SCDHEC 1998).

Monitoring Well /	Naphthalene (ug/L)	Lead (ug/L)	Total Chromium
Sample No.			(ug/L)
RBSL	10	15	100
CNC27M-01 /	Below RBSL	42.5	Below RBSL
27GLM0101			
CNC27M-01 /	Below RBSL	17.5	Below RBSL
27GLM0101D			
(duplicate sample)			
CNC27X-03 /	17	675	133
27GLX0301			

A Site Conceptual Exposure Model (identification of current and future potential receptors and human exposure pathways) is required because RBSLs for naphthalene, lead, and total chromium in groundwater were exceeded. The Site Conceptual Exposure Model is described in the following section (Section 3.2).

3.2 SITE CONCEPTUAL EXPOSURE MODEL

This section focuses on the current and future land use issues concerning the site. Figure 1 shows that the site is located in and surrounded by the CNC. The area surrounding CNC is "mature urban," having long been developed with commercial, industrial, and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. The future use of the property is expected to be industrial or commercial for the foreseeable future after the property is made available for redevelopment under the Base Realignment and Closure Act (BRAC).

Drinking water at the site and surrounding properties is provided by the City of Charleston (City) water treatment plants. A survey of groundwater users within a 7-mile radius of the CNC was provided by the South Carolina Water Resources Commission to ascertain the extent of any shallow groundwater usage. The survey identified no drinking water wells that are screened in the shallow aquifer within a 4-mile radius of the CNC.

3.3 EXPOSURE PATHWAY ANALYSIS

This section presents the receptor characterizations of the potentially exposed populations in the vicinity of the site and identifies the potentially complete exposure pathways for those receptors. SCDHEC requires that only those exposure pathways with CoC concentrations exceeding Tier 1 RBSL concentrations be examined in a Tier 2 Risk-Based Corrective Action (RBCA) report. Tables 10 and 11 present the exposure pathway assessments for current and future use scenarios, respectively.

3.3.1 On-Site Commercial/ Industrial Worker

An on-site commercial or industrial worker is defined as a business employee who works in a commercial/industrial capacity at the site. The future use of the property is expected to be industrial or commercial for the foreseeable future, therefore, an on-site worker was considered as a potential receptor. Drinking water at this site is provided by the city, therefore, ingestion of groundwater is not a complete exposure pathway. Building foundations are assumed sufficient to prevent volatilization from both soil and groundwater into a commercial building, and there is no history of vapors in the commercial building. It is unlikely that any additional exposure pathways will exist for future on-site workers, therefore, no complete pathways exist for either current or future commercial/industrial workers.

3.3.2 On-Site Visitor

An on-site visitor is defined as any person other than a worker who might come on site. On-site visitors would have the same exposure pathways as commercial workers, but their exposure duration would be much shorter. This receptor does not have to be quantified because a potential on-site visitor's chemical intake would not drive risk or cleanup levels at the site.

3.3.3 <u>On-Site Construction Worker</u>

An on-site construction worker is defined as a laborer who would be involved in intrusive activities on or around the site, particularly in the area of subsurface utilities. On-site construction workers could be exposed to constituents in groundwater by the following pathways: inhalation of volatiles from

groundwater, dermal contact with groundwater, and incidental ingestion of groundwater. Utility lines are adjacent the site; therefore, the point of exposure location for the on-site construction worker was considered to be at the source.

3.3.4 On-Site Resident

An on-site resident is defined as any person making his or her home at the site. This site is expected to remain a commercial/industrial facility, therefore, the on-site resident receptor was not considered further.

3.3.5 Off-Site Resident

An off-site resident is defined as any person making his or her home near the site. This receptor's location is either an actual current residence near the site or is a vacant lot or property on which a residence could be built. The site is located in an area that will likely remain commercial/industrial, including all downgradient properties to the Cooper River. Therefore, this potential receptor was not considered further.

3.3.6 Surface Water

The Cooper River is located approximately 75 to 100 feet southeast (downgradient) of the site. Since the base-wide groundwater flow direction primarily to the east, towards the river, this exposure pathway was considered for ingestion of surface water.

3.4 IDENTIFICATION OF DATA REQUIREMENTS

No additional data are required to calculate SSTLs for the site.

3.5 SITE-SPECIFIC TARGET LEVELS

The Site Conceptual Model identified two possible future receptors: a construction worker in a utility trench and the Cooper River. The pathways for the construction worker include possibly ingesting, having dermal contact with, or inhaling volatilized vapors from the groundwater in the utility trench. The pathway for the Cooper River is groundwater migration to the river from the site.

3.5.1 Groundwater SSTLs Protective of the On-Site Construction Worker

Groundwater RBSLs provided by SCDHEC are for ingestion only. Therefore, groundwater RBSLs for a construction worker in a utility trench were calculated for three pathways: dermal contact, incidental ingestion, and inhalation of volatiles. A target cancer risk of 1 x 10⁻⁶ and a target hazard quotient of 1 were used in the calculations. Where possible, site-specific parameters were used for site conditions. Standard defaults were used when available and applicable to a construction worker. When no standard parameters were available, conservative assumptions were used. For all pathways, the exposure frequency was assumed to be 90 days/year and the exposure duration was assumed to be 1 year. These assumptions were considered conservative based on the nature of utility work.

The dermal contact RBSLs were calculated using procedures *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance* (USEPA Peer Consultation Workshop Draft, 1998). Based on expected limited contact with groundwater, the event frequency was assumed to be 1 event/day and the event duration was assumed to be 1 hour/event. The skin surface area available for contact was 4,500 cm², based on one-fourth the skin surface area given in the risk assessment guidance document for a swimming adult.

The incidental ingestion RBSLs were calculated using the equation given in *Risk Assessment Guidance* for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), (USEPA 1989). An incidental ingestion rate of 0.01 L/day was assumed based on a fraction (12.5%) of the incidental ingestion rate for a wading adult (0.01 L/hr), considered for an 8-hour work day. The incidental ingestion rate for wading adults is given in *Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment* (USEPA Region 4, 1995).

Utility lines in the area are typically buried 2 to 6 feet deep. The depth to groundwater at the point of exposure [Monitoring Well CNC27X-03 (NBCE-065-003)] is 2.24 feet bls, with a range of 2 to 6 feet bls for the site. It was assumed that a construction worker might be exposed to chemicals volatilizing from standing groundwater. The inhalation RBSLs were calculated using Henry's Law:

RBSL_{WATER} = RBSL_{AIR}/H
Where H = Henry's Law constant [mg/L-air/mg/L-water]

The RBSL_{AIR} for each chemical was calculated using the equation given in the American Society of Testing and Materials (ASTM) *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites* (1997). SCDHEC values were used for Henry's Law constants.

Underground utilities are present in close proximity to the site, therefore, the point of exposure location for the on-site construction worker was considered to be at the source. As a result, no fate and transport calculations were performed to determine the SSTL protective of the construction worker. The minimum RBSL for the three pathways was chosen as the SSTL for the construction worker.

It should be noted that construction worker RBSLs for lead were not calculated. Lead is considered nonvolatile, therefore, not an inhalation hazard. In addition, since lead is non-absorbable, it is not a dermal hazard. However, lead is an ingestion hazard, but pertinent data are unavailable to calculate a receptor-specific RBSL. Instead, a surface water/human/non-drinking water value (HNDV) was used to compare to the source concentrations and as an SSTL. The HNDV value was taken from the State of Michigan's Generic Cleanup Criteria and Screening Levels for Groundwater-Surface Water Interface Criteria (State of Michigan, May 28, 1999).

The following table shows the calculated RBSLs for each pathway and the SSTL for the construction worker. Appendix F provides the parameters and results of the RBSL calculations.

Chemical of	Dermal	Incidental	Inhalation	SSTL	Maximum	Exceeds
Concern	RBSL, mg/L	Ingestion	RBSL, mg/L	(Minimum	Source	SSTL
		RBSL, mg/L		RBSL,	Concentration	
				mg/L)	Source, mg/L	
Naphthalene	1.63	1135.56	2.63	1.63	0.017	No
Lead *	NA	NA	NA	0.19 *	0.675	Yes
Total Chromium	2.37	85.17	NA	2.37	0.133	No

Notes:

As shown in the above table, the minimum RBSL for naphthalene and chromium are greater than the greatest onsite concentration of each CoC detected in site groundwater. Therefore, a construction worker in a utility trench exposed to groundwater containing naphthalene and/or chromium from Site 27 is not at risk from exposure. However, the construction worker is at risk if exposed to lead in the groundwater.

3.5.2 Groundwater SSTLs Protective of Surface Water

SSTLs were developed which would protect the Cooper River from potential impact from discharge of impacted groundwater. The Domenico Model, as described in Section 2.7, was used to determine the groundwater SSTLs for naphthalene, lead, and total chromium under steady state conditions. Table 9 provides fate and transport parameters used in the model. Groundwater flow at the site (downgradient of

^{*} A construction worker-specific RBSL could not be calculated for lead because of unavailable data and the characteristics of lead being non-volatilizing and non-absorbing. The above SSTL for lead was obtained from the State of Michigan's Generic Cleanup Criteria and Screening Levels.

former UST-221) is to the southeast, towards the Cooper River, which is located approximately 75 to 100 feet from the site. Monitoring well CNC27X-03 (NBCE-065-003) contained naphthalene, lead, and/or total chromium concentrations greater than the Groundwater Ingestion RBSLs, therefore, the area surrounding this monitoring well was used as the source for predicted migration.

The dissolved naphthalene, lead, and total chromium concentrations in well CNC27X-03 were used in the Domenico Model as the source concentrations. The distance from well CNC27X-03 to the Cooper River, which is the nearest point of exposure other than construction worker, was estimated to be between 75 to 100 feet. Using the RBSL values of 0.01, 0.015, and 0.100 mg/L for naphthalene, lead, and total chromium, respectively, at the point of exposure, the SSTL at well CNC27X-03 was calculated and compared with the source concentration in well CNC27X-03. The SSTL at an estimated compliance well was also calculated using the values of the RBSLs at the point of exposure. However, there is no actual compliance well at the site. A compliance well should be installed as part of Corrective Action activities. The distance from the compliance well to the point of exposure was estimated to be 100 feet.

Groundwater SSTLs were determined and are listed in the following table.

Chemical of Concern	Maximum Source Concentration [mg/L]	Source SSTL [mg/L]	Compliance Point SSTL [mg/L]	Exceeds SSTL
Naphthalene	0.017	0.910	0.031	No
Lead	0.675	1.365	0.047	No
Total Chromium	0.133	9.099	0.311	No

As shown in the above table, the current concentrations at monitoring well CNC27X-03 are below the calculated SSTLs for affecting the Cooper River, therefore, the Cooper River is not at risk because of the naphthalene, lead, and total chromium concentrations in groundwater at the site. Appendix F provides the Domenico Model calculations generating SSTLs.

3.5.3 Selected SSTLs

The selected SSTLs and the source concentrations are listed in the following table.

Media of Concern	Chemical of Units Concern		Minimum SSTL	Maximum Source Concentration	Exceeds SSTLs
Groundwater	Naphthalene	mg/L	0.910	0.017	No
	Lead	mg/L	0.190	0.675	Yes
	Total Chromium	mg/L	2.37	0.133	No

As shown in the table above, the maximum concentrations for naphthalene and chromium found onsite are less than the respective minimum SSTLs, therefore, naphthalene and chromium in groundwater do not pose a threat to the identified receptors at the site. However, the maximum concentration for lead found on site exceeds it's the minimum SSTL, therefore, lead in groundwater poses a threat to a construction worker in a utility trench exposed to groundwater.

3.6 RECOMMENDATIONS

Because concentrations for lead in groundwater exceed the minimum SSTL protective of a construction worker in a utility trench, Tetra Tech NUS, Inc. recommends preparing an Active Corrective Action Plan.

4.0 REFERENCES

E/A&H (Ensafe/Allen & Hoshall), Inc. 1996. Final RCRA Facility Investigation for Zone H, Naval Base Charleston, Charleston, South Carolina, July 5, 1996.

SCDHEC (South Carolina Department of Health and Environmental Control), 1997. South Carolina Standard Limited Assessment, June 1997.

SCDHEC, 1998. South Carolina Risk-Based Corrective Action for Petroleum Releases, January 1998.

SPORTENDETCHASN (Supervisor of Ship Building Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston), 1998. Underground Storage Tank (UST) Assessment Report UST, Charleston Naval Base Complex, North Charleston, SC, March 4, 1998.

SPORTENDETCHASN, 1999. Personal Contact between Paul Calligan TtNUS and Copes Wannamacker SPORTENDCHASN, June 17, 1999.

STATE OF MICHIGAN, DEPARTMENT OF ENVIRONMENTAL QUALITY, May 28, 1999. Revised Part 201 Operational Memorandum #18 Cleanup Criteria Tables, Footnotes (G), Lansing, Michigan, May 28, 1999.

TABLE 1

GROUNDWATER ELEVATIONS SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL BASE COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well #	Total Depth of Well (ft)	Top of Casing Elevation, ft (MSL)	Date Measured	Depth to Water, ft (BTOC)	Depth to Product, ft (BTOC)	Product Thickness (ft)	Groundwater Elevation (MSL)
CNC27M-01	11.68	7.85	9/23/1999	1.99	ND	ND	5.86
CNC27X-03	12.43	8.14	9/23/1999	2.24	ND	ND	5.90
CNC27X-04	12.41	8.09	9/23/1999	2.33	ND	ND	5.76
CNC27X-04D	39.62	8.39	9/23/1999	5.54	ND	ND	2.85
CNC27X-05	12.40	8.22	9/23/1999	3.22	ND	ND	5.00
CNC27X-07	13.16	8.34	9/23/1999	3.32	ND	ND	5.02

Notes:

MSL - Mean Sea Level BTOC - Below Top of Casing ND- Not Detected

ft - Feet

TABLE 2

GROUNDWATER FIELD MEASUREMENTS SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well 1.D.	Date Sampled	Purge method	Volume (gallons)	Temp. (° C)	pН	Specific Conductivity (uMHOS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)
CNC27M-01	9/23/1999	PP	2.50	26.1	7.19	0.304	-10	1.34
CNC27X-03	9/23/1999	PP	6.00	27.3	8.94	0.671	10	0.52
CNC27X-04	9/23/1999	PP	4.83	27.2	7.17	0.553	12	1.99
CNC27X-04D	9/23/1999	PP	4.80	23.2	6.74	1.480	14	1.58
CNC27X-05	9/23/1999	PP	4.41	25.7	6.57	0.610	12	2.46
CNC27X-07	9/23/1999	PP	4.00	28.2	6.93	0.761	11	1.53

Notes:

(°C) - Degrees Celsius PP - Peristaltic pump, low flow technique uMHOS/cm - Micro HOS per centimer NTU - Nephelometric turbidity units mg/l - milligrams per liter

TABLE 3

GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Dissolved Oxygen (mg/l)	Alkalinity (mg/l)	Carbon Dioxide (mg/l)	Sulfide (mg/l)	Ferrous Iron (mg/l)	Nitrite (mg/l)	Manganese (mg/l)	Nitrogen/ Nitrate* (mg/l)	Sulfate* (mg/l)
CNC27M-01	9/23/1999	0.40	241	212	0.02	0.03	0.081	0.1	<0.050	16
CNC27X-05	9/23/1999	3.00	203	203	0.02	3.30	0.042	0.5	<0.050	92
CNC27X-07	9/23/1999	1.00	343	230	0.02	1.70	0.044	0.0	<0.050	<1.0

Notes:

mg/l - Milligrams per liter

NA - Not Analyzed

* Fixed base laboratory analysis

TABLE 4

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 27, BUILDING 221 ZONE E, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Sample Location	Sample Identification	Sample Depth (feet)	Total Organic Vapor Headspace Concentration
CNC27-B01	27SSB0104	0-4	0
	27SSB0107	4-7	(>5000 PPM IN BOREHOLE)
CNC27-B02	27SSB0202	0-2	500
	27SSB0207	4-7	(>5000 PPM IN BOREHOLE)
CNC27-B03	27SSB0302	0-2	0
İ	27SSB0304	2-4	0
CNC27-B04	27SSB0404	0-7	No Recording
CNC27-B05	27SSB0504	0-4	0
CNC27-B06	27SSB0601	1-4	No Recording
CNC27-B07	27SSB0701	1-5	No Recording

Notes:

OVA - organic vapor analyzer equipped with a flame ionization detector PPM - Parts Per Million

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL SITE 27, BUILDING 221 ZONE E, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

					Laboratory Screening Data ⁽¹⁾					
Sample Location	Sample Identification	Sample Depth (feet)	Benzene (μg/Kg)	Toluene (μg/Kg)	Ethylbenzene (μg/Kg)	Total Xylenes (μg/Kg)	Naphthalene (μg/Kg)	Diesel Range Organics (mg/Kg)		
CNC27-B01	27SFB070102	1-2	ND	ND	ND	ND	ND	ND		

NOTES:
(1) Laboratory screening data was analyzed using USEPA Method 8020/8015M. Compounds not detected are reported as less than the instrument detection limit.

 μ g/Kg = micrograms per kilogram mg/Kg = milligrams per kilogram

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER SITE 27, BUILDING 221 **ZONE E, FORMER CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

			Laboratory Screening Data ⁽¹⁾							
Sample Location	Sample Identification	Sample Depth (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μ <u>g</u> /L)	Naphthalene (μg/L)	Diesel Range Organics (mg/L)		
CNC27-B01	27GFB010407	4-7	ND	ND	ND	ND	28	ND		
CNC27-B02	27GFB020407	4-7	ND	ם	ND	ND	ND	ND		
CNC27-B03	27GFB030407	4-7	ND	D	ND	ND	17	ND		
CNC27-B04	27GFB040407	4-7	ND	ND	ND	ND	ND ND	ND		
CNC27-B05	27GFB050407	4-7	ND	ND	ND	ND	ND	ND		
CNC27-B06	27GFB060204	2-4	ND	ם	ND	ND	ND	ND		
CNC27-B07	27GFB070304	3-4	ND	ND	ND	ND	ND	ND		

NOTES: (1) Laboratory screening data was analyzed using USEPA Method 8020/8015M. Compounds not detected are reported as less than the instrument detection limit.

μg/L = micrograms per liter

mg/L = milligrams per liter

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Soil Boring / Sample No.	Sample Date	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes (total) (ug/kg)	Benzo(a) anthracene (ug/kg)	Benzo(b) fluoranthene (ug/kg)	Benzc(k) fluoranthene (ug/kg)	Chrysene (ug/kg)	Dibenzo(a,h) anthracene (ug/kg)	Naphthalene (ug/kg)
RBSL (1)		5	1622	1260	42471	73084	29097	231109	12998	87866	210
CNC27-B07 / 27SLB0701	12-Oct-99	< 5	< 5	< 5	< 5	< 355	< 355	< 355	< 355	< 355	< 5

All concentrations are in micrograms per kilograms (ug/kg).

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for sandy soils; depth to groundwater less than 5 feet.

TABLE 8 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER

SITE 27, BUILDING 221 **ZONE E CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well/ Sample No.	Sample Date	Benzene (ug/L)	Ethyl- benzene (ug/L)	Toluene (ug/L)	Xylenes (total) (ug/L)	Naphthalene (ug/L)	Benzo(a) anthracene (ug/L)	Benzo(b) fluoranthene (ug/L)	Benzo(k) fluoranthene (ug/L)	Chrysene (ug/L)	Dibenzo(a,h) anthracene (ug/L)	MTBE (ug/L)
RBSL ⁽¹⁾		5	700	1000	10,000	10 (2)	10 ⁽²⁾	10 (2)	10 ⁽²⁾	10 (2)	10 ⁽²⁾	40
CNC27M-01 / 27GLM0101	23-Sep-99	< 5	< 5	< 5	< 5	< 5	< 11	< 11	< 11	< 11	< 11	< 5
CNC27M-01 / 27GLM0101D	23-Sep-99	< 5	< 5	< 5	< 5	< 5	< 11	< 11	< 11	< 11	< 11	< 5
CNC27X-03 / 27GLX0301	23-Sep-99	< 5	< 5	< 5	< 5	17	< 11	< 11	< 11	< 11	< 11	< 5
CNC27X-04 / 27GL0401	23-Sep-99	< 5	< 5	< 5	< 5	7	< 11	< 11	< 11	< 11	< 11	< 5
CNC27X-4D / 27GL4D01	23-Sep-99	< 5	< 5	< 5	< 5	< 5	< 11	< 11	< 11	< 11	< 11	< 5
CNC27X-05 / 27GLX0501	23-Sep-99	< 5	< 5	< 5	< 5	< 5	< 11	< 11	< 11	< 11	< 11	< 5
CNC27X-07 / 27GLX0701	23-Sep-99	< 5	< 5	< 5	< 5	< 5	< 11	< 11	< 11	< 11	< 11	< 5

All concentrations are in ug/L (micrograms per Liter).

(1) South Carolina Department of Health and Environmental Control Risk Based Screening Levels for ground water.

The Risk based screening level for individual PAH CoC is 10 ug/l or 25 ug/l for total PAHs.

TABLE 8 - Continued

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER SITE 27, BUILDING 221 ZONE E CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well/ Sample No.	Sample Date	Lead (ug/L)	Arsenic (ug/L)	Barium (ug/L)	Cadmium (ug/L)	Total Chromium (ug/L)	Mercury (ug/L)	Selenium (ug/L)	Silver (ug/L)
RBSL ⁽¹⁾		15	50	2000	5	100	2	50	5
CNC27M-01 / 27GLM0101	23-Sep-99	42.5	12.6	55.1	< 2.1	< 11.4	< 0.09	< 2.57	< 2.54
CNC27M-01 / 27GLM0101D	23-Sep-99	17.5	8.4	47	< 1.94	< 4.6	< 0.04	< 2.57	< 2.54
CNC27X-03 / 27GLX0301	23-Sep-99	675	9.4	19.9	< 0.34	133	0.34	< 2.57	< 2.54
CNC27X-04 / 27GL0401	23-Sep-99	< 1.09	< 3.8	19.9	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54
CNC27X-4D / 27GL4D01	23-Sep-99	< 1.09	31.8	65.4	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54
CNC27X-05 / 27GLX0501	23-Sep-99	< 4.9	16.3	17	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54
CNC27X-07 / 27GLX0701	23-Sep-99	< 2.2	< 4.3	80.3	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54

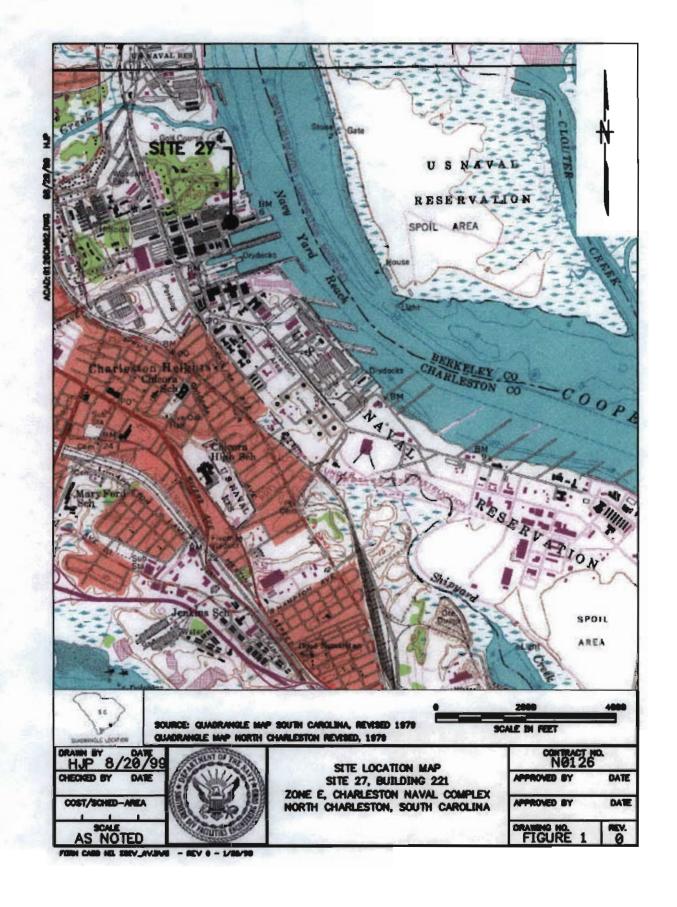
All concentrations are in ug/L (micrograms per Liter).

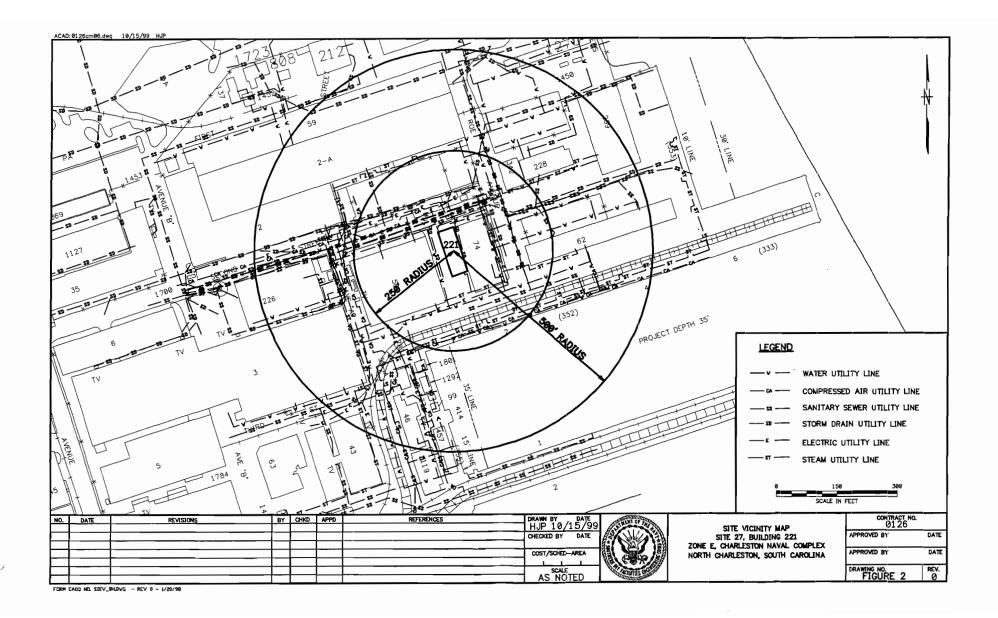
South Carolina Department of Health and Environmental Control Risk Based Screening Levels for ground water.

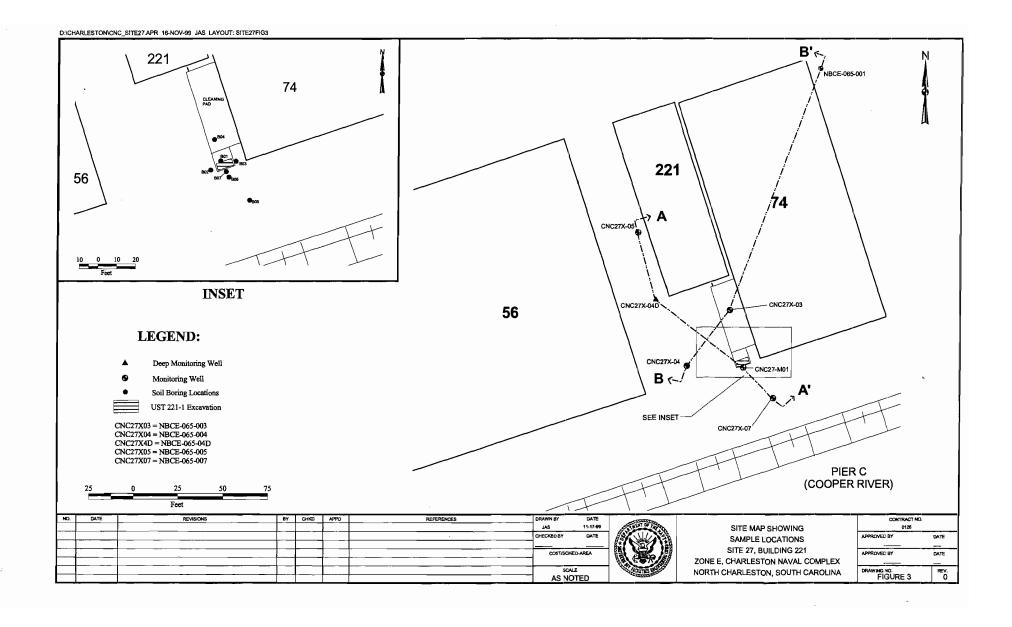
FATE AND TRANSPORT INPUT PARAMETERS SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

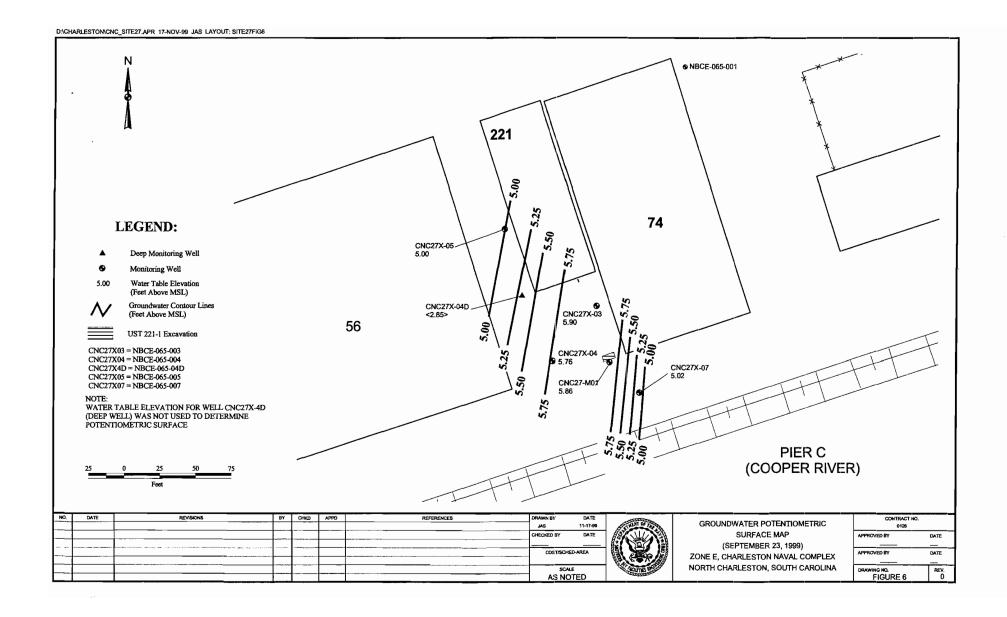
Parameter	Domenico Dilution/Attenuation Model ⁽¹⁾
Hydraulic Conductivity [m/sec]	1.17E-04
Hydraulic Gradient [ft/ft]	0.0124
Porosity [cm3/cm3]	0.47
Estimated Plume Length [ft]	NA
Soil Bulk Density(a) [g/cm3]	1.45
Partition Coefficient [L/kg]	chemical specific
Fraction of Organic Carbon in soil [g/g]	1.75E-03
First Order Decay Rate [sec-1]	0
Modeled Plume Length [ft]	NA
Modeled Plume Width [ft]	NA
Source Width(b) [m]	15
Source Thickness(b) [m]	2
Soluble Mass [kg]	Infinite ^(c)

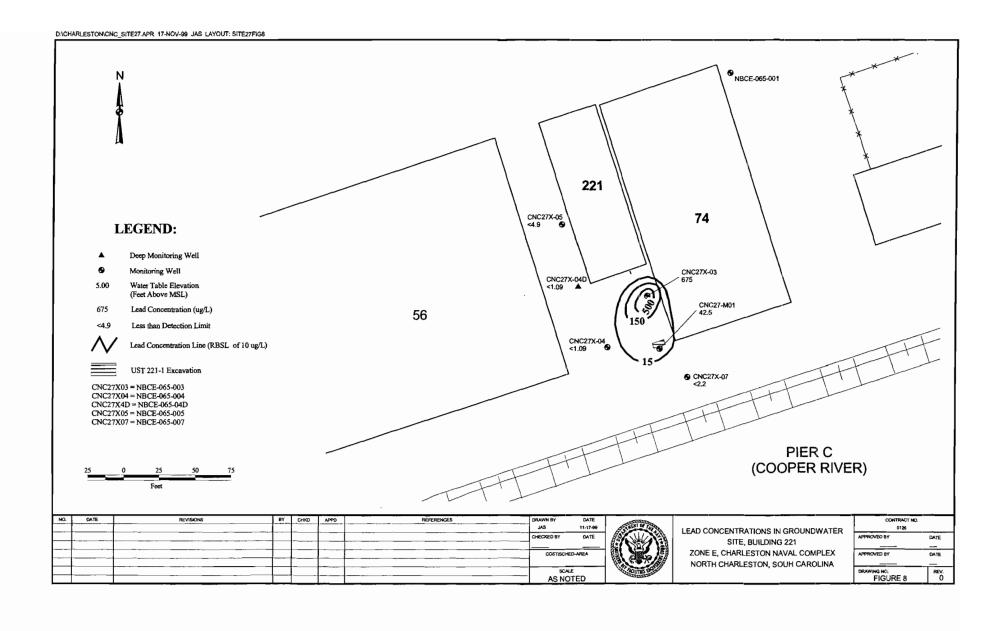
Notes:


- (1) South Carolina Risk-Based Corrective Action for Petroleum Releases, South Carolina Department of Health and Environmental Control, 1998.
- (2) Default value


EXPOSURE PATHWAY ASSESSMENT - CURRENT USE SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA


Media	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non- Selection	Data Requirements (If pathway selected)
Air	Inhalation	No	No volatilization to	
	Explosion Hazard	No	enclosed space. No explosion hazard.	
Groundwater	Ingestion	No	No water supply well	
	Dermal contact	No	downgradient or residential basements.	
	Inhalation	No		
Surface Water	Ingestion	No	Cooper River	No additional data
	Dermal contact	No	approximately 600 feet downgradient.	required
	Inhalation	No	No completed pathway.	
Surficial Soil	Ingestion	No	No impacted surface	
1	Dermal contoct	No	soil	
	Inhalation	No		
Subsurface Soil	Ingestion	No	No current complete	
	Dermal contact	No	pathway.	
	Inhalation	No		
	Leaching to Groundwater	No		


EXPOSURE PATHWAY ASSESSMENT - FUTURE USE SITE 27, BUILDING 221 ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA


Media	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non- Selection	Data Requirements (If pathway selected)
Air	Inhalation	No	No volatilization to enclosed space.	
	Explosion Hazard	Na	No explosian hazard.	
Groundwater	Ingestion	Yes	Future use of property expected to be	No additional data required
	Dermal contact	Yes	industrial or commercial. Underground utility lines	required
	Inhalation	Yes	within close proximity to the site; therefore, construction worker exposure possible.	
Surface Water	Ingestion	Yes	Cooper River 600 feet downgradient.	No additional data required
	Dermal contact	No	Ingestion is considered the most conservative	roquirou
	Inhalation	No	pathway therefore the only one analyzed.	
Surficial Soil	Ingestion	No	No impacted surface soil.	
	Dermal contact	No	3011.	
	Inhalation	No		
Subsurface Soil	Ingestion	No	No impacted subsurface soil.	
	Dermal contact	No	Substituce soil.	
	Inhalation	No		
	Leaching to Groundwater	No		



*

APPENDIX A UNDERGROUND STORAGE TANK ASSESSMENT REPORT - UST 221

Commissioner: Couglas E. Bryant

Beard: John H. Burriss. Chaliman William M. Huil. Jr., MD, Vice Chairman Roger Leaks, Jr., Sectatory

Promoting Health, Protecting the Environment

Richard E. Jabbour, DDS Cyndir C. Mosteller Brien K. Smith Redney L. Grandy

Mr. Gabriel L. Magwood
Southern Division NEC
P.O. Box 190010
2155 Eagle Drive
North Charleston, South Carolina 29419-9010

Re:

Assessment Report dated October 17, 1996

Charleston Naval Base Building 221 (UST 221-1) (Zowe E) (Site Identification # 17686)

Charleston County

Date:

December 31, 1996

Dear Mr. Magwood:

The author has completed technical review of the referenced document. As submitted, the report provides analytical results of environmental sampling conducted to determine if releases have occurred from operation of the referenced underground storage tank and/or associated piping system. The results presented indicate low levels of petroleum hydrocarbons and elevated levels of RCRA metals (total analysis) were detected in soils and groundwater grab samples obtained from the tank pit. These results appear to necessitate additional endeavors for remedial actions (soils removal) and contamination characterization (assessment activities, including groundwater investigations), as appropriate. In this regard, assessment/corrective action activities provided in the Tank Management Plan (dated October 18, 1996) should be implemented in an appropriate and timely manner. Please be reminded that groundwater sampling (if accessary) will require construction of sampling points and will need to be submitted for prior review and approval, as appropriate.

Should you have any questions, please contact me at (803) 734-5328.

Sincerely.

Paul L. Bristol, Hydrogeologist

Groundwater Assessment and Development Section

Bureau of Water

CC:

Trident District EQC

UST ASSESSMENT REPORT UST 221-1 NAVAL BASE CHARLESTON CHARLESTON SC

Prepared for:

DEPARTMENT OF THE NAVY.
SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON SC

Prepared by:

SUPERVISOR OF SHIPBUILDING, CONVERSION AND REPAIR, USN, PORTSMOUTH DETACHMENT ENVIROMENTAL CHARLESTON, SC 1899 NORTH HOBSON AVE. NORTH CHARLESTON SC 29405-2106

October 17, 1996

South Carolina Department of Health and Environmental Control (S.C.D.H.E.C.) Underground Storage Tank (UST) Assessment Report

Once ground ording	e rank (001) Assessment Report
Date Received State Use Only	Submit Completed Form to: UST Regulatory Section SCDHEC 2600 Bull Street Columbia, South Carolina 29201
State Ose Only	Telephone (803) 734-5331
I OWNERSHIP OF UST(S)	
Agency/Owner: Southern Division, Naval Faciliti	es Engineering Command, Caretaker Site Office
Mailing Address: P.O. Box 190010	
City: N. Charleston State: Se	C Zip Code: 29419-9010
Area Code: 803 Telephone Number: 74	43-9985 Contact Person: LCDR Paul Rose
II SITE IDENTIFICATION AND	LOCATION
Site I.D. #: Not regulated	DOCATION
Facility Name: Charleston Naval Base Co	omplex, UST 221-1
Street Address: South Hobson Avenue	
City: North Charleston, 29405-	2413 County: Charleston
III CLOSURE INFORMATION	
Closure Started: 14 June 1996	Closure Completed: 18 June 1996
Number of USTs Closed:	SPORTENVDETCHASN
Consultant	UST Removal Contractor
IV. CERTIFICATION (Read and Sig	n after completing entire submittal)
I certify that I have personally acceptined and are familiar with the information submitted in the and this information. I believe that the submitted information at true, actures and complete. LCDR Paul Rose	i all exacted documents; and that based on my inquiry of those individuals responsible for obtaining
Name (Type or Print)	•
(-)Q_	
Signature	

	V. UST INFORMATION	Tank l	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6
A.	Product	Waste Oil	_				
B.	Capacity	280gal.					
C.	Age	> 20 yrs.					
D.	Construction Material	Steel					
E.	Month/Year of Last Use	1984					
F.	Depth (ft.) To Base of Tank	5'					
G.	Spill Prevention Equipment Y/N	N					
H.	Overfill Prevention Equipment Y/N	N	_				
I.	Method of Closure Removed/Filled	R					
J.	Visible Corrosion or Pitting Y/N	א					
K.	Visible Holes Y/N	И					
L.	Method of disposal for any USTs removed from	om the g	round (attach o	disposa	l manife	ests)
	The UST was removed from the ground for recycling as scrap metal. See Atta	-	-	cleane	d. It w	as then	cut up
M.	Method of disposal for any liquid petroleum, USTs (attach disposal manifests)	sludges,	or wast	e water	rs remo	ved fro	m the

If any corrosion, pitting, or holes were observed, describe the location and extent for each

The tank was in good condition. No corrosion, pitting, or holes were observed.

The residual waste oil was recycled.

N.

UST

VI. PIPING INFORMATION

A.	Construction Material
B.	Distance from UST to Dispenser
C.	Number of Dispensers
D.	Type of System P/S
E.	Was Piping Removed from the Ground? Y/N
F.	Visible Corrosion or Pitting Y/N
G.	Visible Holes Y/N
H.	Age

Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6
Steel			•		
5'					
1					
N/A*					
Y					
N					
N					
> 20 years					

^{*} UST 221-1 was a gravity fed holding tank for an oily water separator. It was periodically emptied by suction.

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each line.

Pipes were mildly corroded, but overall in good condition. However, the feed pipe from the separator to the UST had a loose mechanical connection at the UST.

VII. BRIEF SITE DESCRIPTION AND HISTORY

Bldg 221 is a former pickling plant and galvanizing shop located inside the Controlled Industrial Area of the Charleston Naval Shipyard. Building 221 was part of the Bldg 56, Pipe Shop area. The oil/water separator and tank system at the Bldg 221 site was part of a steam cleaning pad. The pad was used for cleaning oily/greasy parts and components. A drain in the pad emptied into the oil/water separator. In 1983-1984 the operation was shut down.

Most of the water present in the Attachment I photographs is the result of a leaking water pipe adjacent to Building 74. See Attachment I.

VIIL SITE CONDITIONS

Yes No Unk

A.	Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		x	
B.	Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.)		x	
<u>-</u> С.	Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)? GW was 6" deep throughout the excavation, GSL 5'	x		
D.	Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		x	
E.	Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness. [* sheen]	X*		

IX. SAMPLE INFORMATION

S.C.D.H.E.C. Lab Certification Number _____10120

Sample #	Location	Sample Type (Soil/Water)	Depth*	Date/Time of Collection	Collected By	OVA#
SPORT 0080-1	Bottom center of excavation.	Water	5'	6/17/96 1430	R. Atkins	Not Taken
SPORT 0080-2	West end of tank.	Soil	3'	6/17/96 1430	R. Atkins	Not Taken
SPORT 0080-3	East end of tank,	Soil	3'	6/17/96 1430	R. Atkins	Not Taken
	:			·		
		·				
		ı		¥.	·	l

^{* =} Depth Below the Surrounding Land Surface

X. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect and store (preserve) the samples.

After the removal of UST 221-1 soil and ground water samples were taken. Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC UST Assessment Guidelines.

The samples are identified as follows:

	Detachment Charlesto	n	General Engineering Labs
Ground Water Sample	UST221-1	=	SPORT -0080-1
Soil Sample	UST221-2	=	SPORT -0080-2
Soil Sample	UST221-3	=	SPORT -0080-3

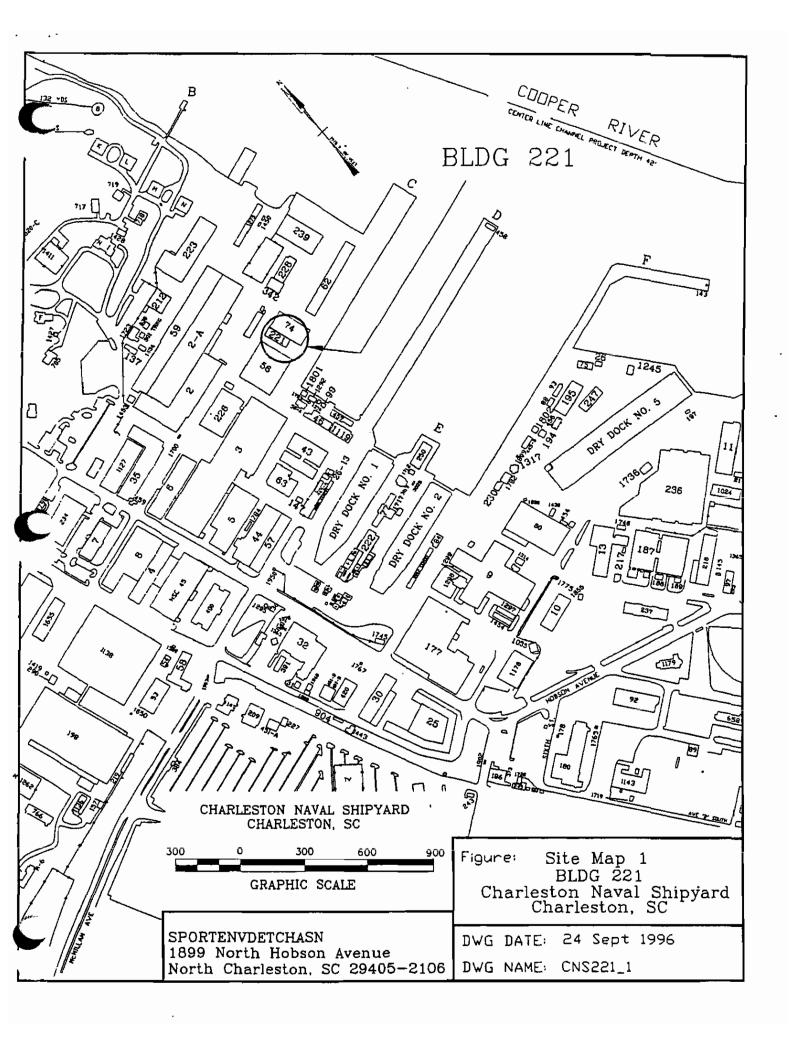
Sample jars were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted at the tank ends just above the ground water level. The ground water sample was taken from the bottom center of the excavation.

The samples were marked, logged, and immediately placed in sample coolers packed with ice to maintain an approximate temperature of 4° C. Tools were thoroughly cleaned and decontaminated with organic-free soap and water after each sample.

The samples remained in the custody of SPORTENVDETCHASN until they were transferred to General Engineering Laboratories for analysis as documented in the attached Chain-of-Custody Record.

XI. RECEPTORS

Yes No


A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system? [*Cooper River 103'] If yes, indicate type of receptor, distance, and direction on site map.	X*	
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system? If yes, indicate type of well, distance, and direction on site map.		x
C.	Are there any underground structures (e.g., basements) located within 100 feet of the UST system? If yes, indicate the type of structure, distance, and direction on site map.		x
D .	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? [*water, storm drain] If yes, indicate the type of utility, distance, and direction on the site map.	X*	
E.	Has contaminated soil been identified at a depth of less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		x
	If yes, indicate the area of contaminated soil on the site map.		

Attachment I

SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and pump island locations, sample locations, extent of excavation, and any other pertinent information.

Site Maps 1, 2, and 3 Photographs 1, 2, and 3

Bldg 74 Cooper R. 103' Pier C * Much of the water present in the excavation was from a leaking water pipe in this tocation. Vent Fill pipe. This pipe had loose Berm for parts cleaning mechanical connections. pad area. S.S. SPDRT 0080-3 Parts cleaning pad drain. Former UST 221-1 Vent Both lines capped inside oil/water separator. LEGEND Concrete vault. Loose mechanical not associated with Fence oll/water separator. Connection G.W. Ground Water Sample Drain Oil/water separator Electric line Storm drain Sanitary sewer line for oil/water Note: 6' water covered the entire bottom of the separator, capped. excavation. Light sheen, Soil Sample S.S. SPDRT 0080-2 S.S. no odor. G.V. SPDRT 0080-1 Figure: Site Map 2 (Naphthalene > RBSL) 7 UST 221-1 Charleston Naval Base GRAPHIC SCALE Concrete pad throughout -Charleston, SC SPORTENVDETCHASN DWG DATE: 16 Oct 1996 1899 North Hobson Avenue North Charleston, 57, 29405-2106 DWG NAME: CNS221_2

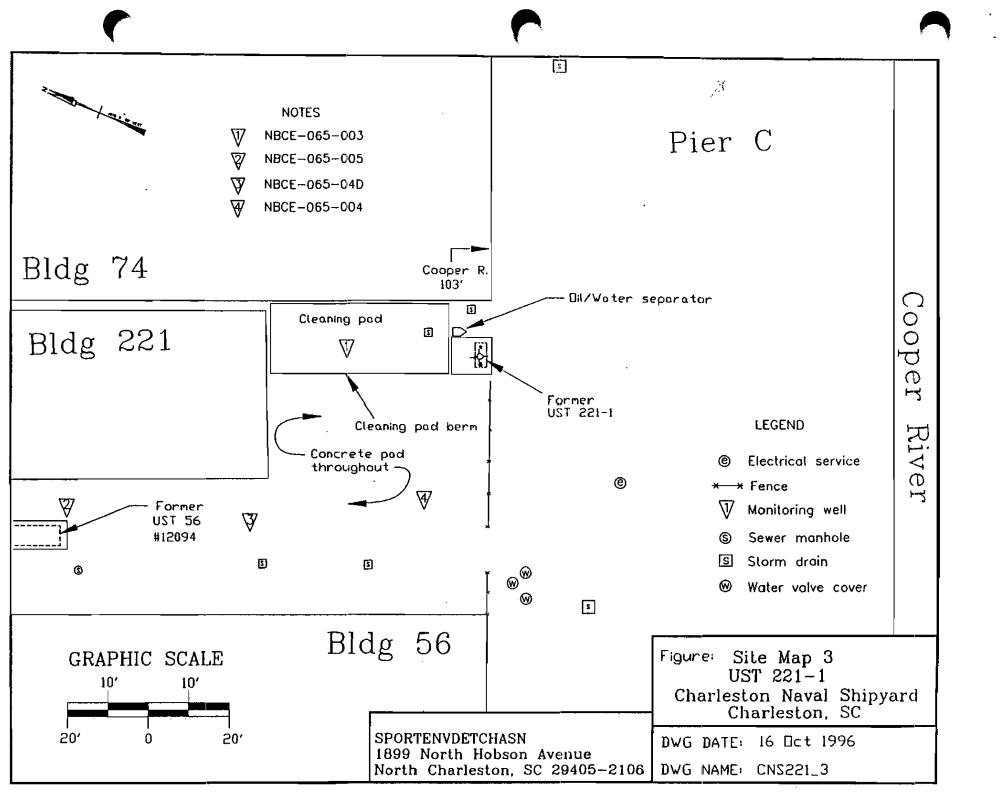


Photo 2: UST 221 being removed.

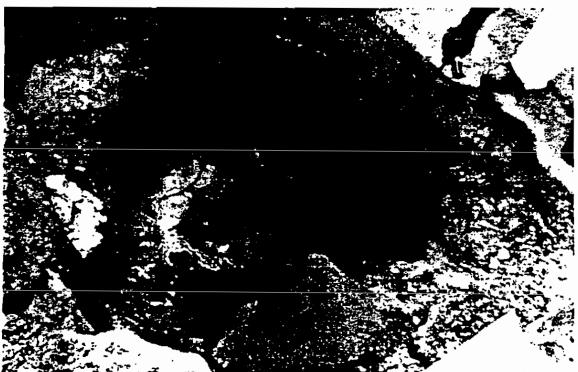


Photo 2: UST 221 excavation after removal of the UST. Electric line is being indicated.

Photo 1: UST 221-1 before removal.

Attachment II

ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

Certified Analytical Results Chain-of-Custody

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Clime

Supervisor of Ship Building & Conversion

SUPSHIP-Portunouth Detachment-Env.

1899 North Holson Ave.

North Charleston, South Carolina 29405-2106

Connec

Mr. Bill Hiere

Project Description:

SUPSHIP-Portsmouth Detechment

oc: NPWC00196

Report Date: June 27, 1996

Page 1 of 4

Sampla ID

Lab ID

Metrix

Date Collected

Date Received

Priority

Collector

: SPORT0080-1

: 9606324-01

: GroundH2O

: 06/17/96

. 06/18/96 : Routhe

: Client

Parameter	Qualifler	Repuit	DL	<u> 19</u>	Unite	DF.	Analyst Date	Time	<u>Botch</u>	M
Yolatile Organics										
ITEX -4 items										
Sentens	บ	00.0	1.00	2.00	ug/l	1.0	RMB 06/21/96	1058	86230	1
thy foresens		4.90	1.00	2.00	ਸਕੋ∖]	1.0		-		
Tolume	. U	0.00	1.00	2.00	ug/l	1.0				
Xylenes (TOTAL)		18.7	1.00	4.00	ug/l	1.0				
Nephthalana		34.7	1.00	2.00	ug/1	1.0				
Extractable Organics					_					
Polymuclear Aromatic H	jdrocarbons -	lá com								
Acenaphthene	ប	0.00	5.00	10.0	υ g/ Ι	1.0	BDG 05/25/96	1950	86220	1 2
Acenaphthylene	ช	0.00	5.00	10.0	սա/1	1.0				
Anthrocene	ប	0.00	5.00	10.0	ug/1	1.0				
Benzo(a)anthusocos	ឋ	0.00	5.00	10.0	ug/l	1.0				
Benzo(s)pyrana	บ	00.0	5.00	10.0	ug/l	1.0				
Benzo(b)fluoranihene	บ	0.00	5.00	10.0	vg/l	1.0				
Bonzo(ghi)peryiene	ช	0.00	5.00	10.0	ug/l	1.0				
Benzo(k)fluoranthene	บ	0,00	5.00	, 10.0	ug/l	1.0				
Chrysene	ប	0.00	5.00	10.0	ug/i	1.0				
Dibouzo(a,h)anthracene	ប	0.00	5.00	10.0	ug/l	1.0				
Fluoranthece	ប	0.00	5.00	10.0	ug/l	1.0				
Fluorene	ŭ	0.00	5.00	10.0	ug/l	1.0	l			
Indeno(1,2,3-c,4)pyreae	: ប	0.00	5.00	10.0	ug/l	1.0				
Naphrhalens		10.4	5.00	10.0		į.O	İ			
Phanenthrene	บ	0.00	5.00	10.0	ng/i	1.0				
Рутеле	ប	0.00	5.00	10.0	ug/l	1.0				
Metals Analysis	-			- 3-4	-5-7					
Mercury	J	0.225	0.0148	0.500	ug/l	1.0	RMJ 06/20/9	6 1312	86170	9 1
Silver	Ī	2.68	2.49	10.0	_	1.0				4
Arrente	j	13.4	1.86	10.0	ug/l	į,				

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ava.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiera

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00196

Report Date: June 27, 1996

Page 2 of 4

	S amp le ID)	: SPORT0080-1							
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time	Botch	м
Berium		133	0.0663	10.0	ug/l	1.0				
Cedmium		5.30	0.0970	5.00	ng/l	٥,ړ	NRM 06/21/94	2338	86194	. 3
Chromium		221	0.396	10.0	ug/l	1.0				
Lead		527	1.13	5.00	ng/l	1.0				
Schmium	Ţ	4.30	1.43	5.00	ug/I	1.0				
General Chemistry					-					
Total Roc. Petro. Hydro	carbons	9.08	2.00	2.00	mg/l	1,0	JEN 06/24/9	5 1025	86317	4

he following prep procedures were performed:

GC/MS Base/Neutral Compounds

Moreury TRACE GWL 06/20/96 1600 86220 5 RMJ 06/19/96 1230 86170 6 FGD 06/20/96 1530 86194 7

Surrogate Recovery	Tost	Percent%	Acceptable Limits	•
2-Pluorobipbenyl	M610	58.6	(43.0 - 108.)	
Nitrobenzeno-d5	M610	56.0	35.0 - 111.3	
p-Terphenyl-di4	M610	49.3	(33.0 - 125.)	
Bromofluorobenzena	BTEX-8260	88.8	(80.0 - 128.)	
Dibromotlyoromethme	BTEX-8260	103.	(67.7 - 135.)	
Toluene-d8	BTEX-8260	98.8	(76.8 - 172.)	
Bromofluorobenzene	NAP-8260	2.88	(80.0 - 128.)	
Dibromofinoromethene	NAP-1260	103.	(67.7 - 135.)	
Toluene-di	NAP-8260	98.8	(76.8 - 122.)	

M = Method	Method-Description	
М1	EPA 8250	
M 2	EPA 8270	
M3	EPA 6010A .	
M 4	EPA 9070A	
M5	EPA 3510	

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2105

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

∞ NPWC00196

Report Date: June 27, 1996

Page 3 of 4

	Sample ID	: SPORT0080-1	
M = Metbod		Method-Description	_
M 6		EPA 7470	
M7		EPA 3005	

Notes:

e qualifiers in this report are defined as follows:

dicates presence of malyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL),

indicates that the maiyes was not desected at a concentration greater than the desection limit.

rdicate that a quality control analyze recovery is outside of specified acceptance criteria.

GEL Laboratory Co	rtifications	RPI Laboratory Certification	Dig.
AL - 41040	AZ - AZ0514	AL - 41050	AZ - AZ0514
CA - 2089	CT - PH-0169	CA - I-1023/2056	CT - PH-0175
DE - SC012	FL - E87156/87294	FL - E87472/87458	MS - 29417
ME - SC012	MS - 10120	NY - 11502	RI - 138
NC - 233	NY - 11501	SC - 10582	TN - 02934
KI - 135	SC - 10120	UT • B-227	VA-00111
TN - 02934	UT - E-251	WA - C225	NJ - 79002
VA - 00151	WA - C223	PA - 68-485	WY - 235
WI - 999887790			

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Cient

Supervisor of Skip Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

œ: NPWC00196

Report Date: June 27, 1996

Page 4 of 4

Sample ID

: SPORT0080-1

GEL Laboratory Certifications

EPI Laboratory Certifications

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Keren Blakensy at (803) 769-7386.

Analytical Report Specialist

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Porsmonth Demokrate

c: NPWC00196

Report Date: June 27, 1996

Page 1 of 4

Sample ID

: SPORT0080-2

LibD

: 9606324-02

Matrix

: Soil

Date Collected

: 06/17/96

Date Received

: 06/18/96

Priority

: Routing

Collector

: Client

Parameter	Qualifier	Respit	DL	RL	Units	DF	Analysi	Date	Time	Batch	M
olatile Organics											
BTEX -4 items											
3cmzena	บ	0.00	1.00	2.00	ug/kg	1.0	JAC 0	6/19/96	0943	86165	1
Ethylbenzene	J	1.30	1.00	2.00	ug/kg	1.0					
Tolugne	บ	0.00	1,00	2.00	ug/kg	1.0					
Xylenes (TOTAL)		6 .5 0	1.00	4.00	ug/kg	1.0					
Naphthalene		4,70	1.00	2.00	ug/kg	1.0					
Atractable Organica											
Polymuclear Aromatic H	lydrocarbons -	. 16 items									
Acmaphthene	v	00.0	1650	3300	ng/kg	10.	JCB (6/25/96	2032	86390	2
Acenaphthyiene	ប	0 .00	1650	3300	ug/kg	10.					
Anthracene	ប	0.00	1650	3300	ug/kg	10.					
Bouro(a)anthracens	ប	0.00	1650	3300	n it∖pui	10.					
Векто(в)рупене	ប	0.00	1650	3300	ug/kg	10.					
Benzo(b)filporanthene	v	0.00	1 650	3300	ug/kg	10.					
Baum(ghi)perylene	U	0.00	1650	3300	ug/kg	10.					
Benzo(k)/Juoranzhame	្ឋ	0.00	1650	5300	ug/cg	10.					
Chrysena	ប	0.00	1 65 0	3300	ug/kg	10.					
Dibenzo(a,h)enthracene	ប	0.00	1650	3300	ns/cs	10.					
Fluoranthene	ប	0.00	1650	3300	ug/cg	10.					
Fivorene	ប	0.00	1650	3300	ug/kg	10.					
Indeno(1.2,3-c,d)pyrene	ı U	0.00	1650	3300	ug/kg	10.					
Nophthalene	U	0.00	1650	3300	ug/kg	10.					
Phononiums	ប	0.00	1650	3300	ug/kg	10.					
Pyrone	บ	0.00	1650	3300	nE/cE	10.		•			
Artais Analysis									•		
Mercury		0.410	0.00243	0.200	mg/kg	1.0	RMJ	06/21/9	6 1604	8617	
Silver		882	123	500	ug/kg	1.0	WCC	06/21/9	5 1404	8619	5 :
Amenic		2120	92.1	500	na/ce	1.0	l				

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Deutchmont-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact;

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

NPWC00195

Report Date: June 27, 1996

Page 2of4

	Sample III		: SPORT0080-2						•		
Parameter	Qualifler	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch	M
Barium		33300	3.28	500	ug/kg	1.0					
Cadmium		2000	4.80		ug/kg	1.0	WCC	06/21/96	1404	86195	3
Chromium		68200	29.5	500	ug/kg	1.0					
Leid ,		259000	55.9	250	ug/kg	1.0					
Scienium		321	70.8	250		1.0					
General Chemistry					•						
Total Rec. Petro. Hydroc	arbons	400	10.0	50.0	mg/kg	1.0	JEN	06/26/96	1200	86423	4
at following prep prote	dures were	verformed:									

GCM\$ Base/Neutral Compounds

Mercury

TRACE

GWL 06/25/96 1630 86390 5 RMJ 06/20/96 1500 86172 6 DVW 06/20/96 1745 86195 7

Commente:

A dilution was required for Extractable Organics due to matrix interference. As a result, the demotion limits are elevated.

Surrogate Recovery	Test	Percent%	Acceptable Limits	'
2-Fluorobiphenyl	M610	0.00*	(30.0 - 115.)	
Nitrobenzeno-d5	M610	0.00*	(23.0 - 120.)	
p-Terphenyl-d14	M610	0.00*	(37.3 - 128.)	
Вотобитобениева	BTEX-8260	108.	(59.7 - 159.)	
Dilromo fluoromethene	BTEX-8260	101.	(74.0 - 128.)	
Toluene-d8	BTEX-8260	98.0	(53.4 - 163.)	
Bromofluorobenzene	NAP-1260	108.	(59.7 - 159.)	
Dibomo (lucromethere	NAP-8260	101.	(74.0 - 128.)	
Toluene-d8	NAP-8260	98.0	(53.4 - 163.)	

Meeting today's needs with a vision for totrorrow.

CERTIFICATE OF ANALYSIS

Clienc

Supervisor of Ship Building & Conversion

SUPSHIP-Portamouth Detechment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

ce: NPWC00196

Report Date: June 27, 1996

Page 3 of 4

	\$ample ID	: SPORT0080-2		
M = Method	-	Method-Description		
M 1		EPA 8260	•	
M2		EPA 8270	•	
M 3		EPA 6010A		
M4		EPA 9071		
M 5		EPA 3550		
M 6		EPA 7471		
~4.7		EPA 3050		

iotes

The qualifiers in this report are defined as follows:

indicate that a quality control analyte recovery is ontside of specified acceptance criteria.

GEL Luboratory Certifications		EPI Laboratory Certification	D.S	
AL - 41040	AZ - AZ0514	AL - 41050	AZ - AZ0514	
CA - 20 2 9	CT - PH-0169	CA - I-1023/2056	CT - PH-0175	
DE - SC012	FL - E87156/87294	FL - E87472/87458	MS - 29417	
ME - SC012	MS - 10120	NY -11502	RI - 138	
NC - 233	NY - 11501	SC - 10582	TN - 02934	
RI - 135	SC - 10120	UT • E-227	VA - 00111	
TN - 02934	UT - E-251	WA - C225	NJ - 79002	

I indicates presence of analyte at a concentration loss than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contects

Mr. Bill Higgs

Project Description:

SUPSHIP-Portsmouth Datachment

c: NPWC00196

Report Date: June 27, 1996

Page 4 of 4

Sample ID

: SPORT0080-2

GEL Laboratory Certifications

EFI Laboratory Certifications

VA-00151

WA - C223

PA - 68-485

WV - 235

WI-999887790

This data report has been prepared and reviewed in accordances with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

applyrical Pener Specialist

P O Box 30712 • Charleston, SC 29417 • (803) 556-8171 • Fox (803) 766-1178

•9606324-02*

Meeting today's needs with a vision for tomatrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Connec

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

∞: NPWC00196

Report Date: June 27, 1996

Page 1 of 4

Sample ID

: SPORT0080-3

Lab ID

: 9606324-03

Mexix

: Sail

Data Collected

: 06/17/96

Date Received

: 06/18/96

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	<u>DL</u>	RL,	Units	D F	Analys	t Data	Time	Botch	M
elle Organics											
X-4 items											
Auteno .	Ŭ	0.00	1,00	2.00	ug/kg	1.0	JAC (06/19/96	1303	86165	1
Any ibenzense	U	0.590	1.00	200	ug/cg	1.0			•		
Toluene	វ	0.00	1.00	2.00	ug/cg	1.0					
Xylenes (TOTAL)	J	2.70	1.00	4.00	ug/kg	1.0					
Naphthalene	U	0.740	1.00	2.00	ug/kg	1.0					
ixtractable Organics											
Polynuclear Aromatic H	ydrocarbons -	16 items									
Acceptithens	U	0.00	ජ 0	1300	ug/kg	4.0	JCB	06/25/96	2104	86390	2
Accumphthy lone	U	0.00	650	1300	ugarg	4.0					
Anthracene	บ	00.0	650	1300	ug/kg	4.0					
Benzo(a)anthracene	บ	0.00	650	1300	ug/kg	4.0					
Benzo(a)pyrene	บ	00.0	650	1300	ug/kg	4.0					
Benzo(b)(luoranthena	ซ	0.00	650	1300	ur/kg	4.0					
Bosso(ghi)perylene	บ	00.0	650	1300	ug/kg	4.0					
Barro(k)fhorenthene	บ	00,0	650	1300	ns/ks	4.0					
Chryscae	บ	0.00	630	1300	ng/kg	4.0					
Dibrizo(s.h)enthrecene	ម	0.00	650	1300	ug/kg	4.0					
Fluoramhense	U	00.0	650	1300	ug/kg	4.0					
Fluorene	U	0.00	650	1300	ug/kg	4.0					
Indeno(1,2.3-c,d)pyrene	U	0.00	650	1300	ug/kg	4.0					
Naphthalana	Ū	0.00	650	1300	ug/kg	4.0					
Phenanthrene	ซ	00.0	650	1300	ug/kg	4.0					
Руппос	ម	0.00	650	1300	ug/kg	4.0					
Metals Amalysis											
Macury	1	0.0538	0.00215	0.200	mg/kg	1.0	RMJ	06/21/9	6 1606	8617	2 N
lver	Ī	281	125	500	ng/kg	1.0	WCC	06/21/9	6 1409	8619	5 3
Aroenie	•	1290	93.0	500		1.0	-				

INTELLAC IT, WAS

P O Box 30712+ Charleston, SC 29417+ (803) 556-8171+ Fax (803) 766-1178 +9606324-03+

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Clent

Supervisor of Ship Building & Conversion.

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contract

Mr. Bill Hiere

Project Description:

SUPSHIP-Portsmouth Detachment

SEE NP#C00196

Report Date: June 27, 1996

Page 2 of 4

	Sample ID		: SPORT0080-3							
Parameter)valliler	Result	DL	RL	Units	DF	Analyst Date	Time	Batch	M
Burium		21200	3.32	500	ug/kg	1.0				
Codmium		631	4.85	250	ug/kg	1.0	WCC 06/21/96	1409	86195	3
Cinomium		39200	29,8	500	ug/kg	1.0				
Lead		81100	56.5	250	ug/kg	1.0				
Sclevium		389	71.5	250	₽₽\₽₽	1.0				
General Chemistry										
Total Rec. Petro, Hydroca	spons	115	10.0	\$0.0	mg/kg	1.0	JEN 06/26/96	1200	86423	4

a following prap procedures were performed:

GC/MS Base/Neutral Compounds

Mercury

TRACE

GWL 06/25/96 1530 86390 5

RMJ 06/20/96 1500 86172 6

DVW 06/20/96 1745 86195 7

Commenter

A dilution was required for Extractable Organics due to matrix interference. As a result, the detection limits are elevated.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphanyl	M610	89.0	(30.0 - 115.)	
Nitrobenzene-d5	M610	57.7	£3.0 - 120.)	
p-Terphenyl-d14	M610	97.D	(37.3 - 128.)	
Bromofluorobenzena	BTEX-8260	104.	(59.7 - 159.)	
Dibromofinocometume	BTEX-\$260	101.	(74.0 - 128.)	•
Toluene-d8	BTEX-8260	95.6	(53.A - 163.)	
Brumpfluorobertene	NAP-8260	104.	(59.7 - 159.)	
Dilromofizoromethene	NAP-8260	101.	(74.0 - 128.)	•
Toluens-d8	NAP-8260	95.6	(53.4 - 163.)	

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Clients

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portamouth Detachment

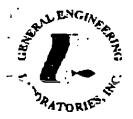
o= NPWC00196

Report Date: June 27, 1996

Page 3 of 4

	Sample ID	: SPORT0080-3	
M = Method		Method-Description	· · · · · · · · · · · · · · · · · · ·
M 1		EPA 8250	
M 2		EPA 8270	
M 3		EPA 6010A	
M4		EPA 9071	
M5		EPA 3550	
M 6		EPA 7471	
_47		EPA 3050	

otes:


The qualifiers in this report are defined as follows:

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

indicate that a quality control analyte recovery is outside of specified acceptance criteria.

GEL Laboratory Co	riffeations	EPI Laboratory Certification	200
AL-41040	AZ - AZ0514	AL - 41050	AZ - AZ0514
CA - 2089	CT - PH-0169	CA - I-1023/2056	CT - PH-0175
DE - SC012	FL - E87156/87294	FL - E87472/87458	MS -29417
ME - SC012	M5 - 10120	NY -11502	RI - 138
NC - 233	NY - 11501	SC - 10582 -	TN - 02954
RI - 135	SC - 10120	UT - E-227	VA -00111
TN - 02934	UT - E-251	WA - C225	NJ - 79002

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Cilent:

Supervisor of Ship Building & Conversion

SUPSHIP-Portamouth Detechment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detactionent

c NPWC00196

Report Date: June 27, 1996

Page 4 of 4

Sample ID

: SPORT0080-3

GEL Laboratory Certifications

EPI Laboratory Certifications

VA-00151

WA - C223

PA - 68-485

WY - 235

WI - 999887790

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any quantions to your Project Manager, Karen Blakeney at (803) 769-7386.

Analytical Report Specialist

¥ 00196

CHAIN OF CUSTODY RECORD

General Engileering ories, Inc. 2040 Savage Road Charleston, South Cas P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

_or____9606324 SAMPLE ANALYSIS REQUIRED (x) - we remarks area to specify specific compounds or methods Client Name/Facility Name Use F or P in the boxes to indicate whether sample was fillered and/or preserved SPORTENVDETCHASH Coliform - specify type CCL 21882 B/N Extractables Collected by/Company SPORTENV DETCHASH WELL SOIL COMP ŏ Remarks SAMPLE ID DATE 8 X SAKT0080-1 6/n/96 1430 UST 221-16W × XX US7221-2 5AKT0080+2 6/17/96 1430 XX × UST 221-3 6/17/96 1430 6/11/94 /430 UDA TRIP BLOOK Remarks: 1 1 10/18/16 HYZ Received by:

Remarks: 1 10/18/16 HYZ Muchad & Time: Relinquished by: Relinquished by: The Shlean 6/11/96 1530 Date: 1300

White = sample collector

Yellow = file

Pink = with report

Attachment III

Certificate of Disposal (tank)

UST Certificate of Disposal

CONTRACTOR

Supervisor of Shipbuilding, Conversion and Repair, USN Portsmouth, VA Environmental Detachment Charleston 1899 North Hobson Avenue North Charleston 29405-2106

Telephone (803) 743-6482

TANK ID & LOCATION

UST 221-1, Bldg 221, Charleston Naval Shipyard, Charleston, SC

DISPOSAL LOCATION

Bldg. 1601 Tank Cleaning & Disposal Area Charleston Naval Complex

TYPE OF TANK	SIZE (GAL)
Waste Oil	280 gal.

CLEANING/DISPOSAL METHOD

The tank was cut open on both ends, cleaned with a steam cleaner, and disposed of as recyclable scrap metal.

DISPOSAL CERTIFICATION

I certify that the above tank has been properly cleaned and disposed of as recyclable scrap metal.

98. Hthem 1 9-26-96 (Name) (Date)

APPENDIX B

GEOLOGIC BORING LOGS

BORING LOG

		NAME		CW	<u></u>			BORING N	UMI	BER: 27 MW	<u>p/</u>			
	UNG UECT		BEK:		·/- C			_DATE: _GEOLOGI	ст∙ '	8/4/99				
DRIL	LING	RIG:	7.141.	51.	oloms.	(DRILLER:	J1.	L. Bound		-		—
	· · · · ·		l				RIAL DESCRIP		<u> </u>		PID/FI	D Rea	dina	(mpm)
Sample No. and Type of RQD	(FL)	Slows / 6" or RQD (%)	Sample Recovery I Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soli Density/ Consistenc	Color	Material Clas	ssification	U S C S .	Remarks		Sampler BZ		Driller BZ**
	1					Br	Son	الم		De-1				
	2					٣٠٦	Grand	E Soul		Moist				
	3									Saturt				
	4									1				
	5					1		^		1				
	4						Sond)						
	7					Gru	Soud Clayey	Saul			O	C	0	ی
-	4					T				4				
								,						
		\angle												
<u></u>														
		\angle		· ·								_		
												L.	-	
					<u> </u>							L		
		\setminus									T"	<u> </u>		П
ļ														
_	de mon		er rock bro		@ borehole	. Incre	ase reading frequency	y if elevated repon	se rea	Background				Ó
Conv	ertec	to We	II;	Yes	Y)		No	Well I.I	D. #:	Mudi				

							BORING LOC	<u>}</u>	Pag Cかしる	e _	<u></u>	of_		
PRO	JECT	NAME NUME COME	BER:	<u></u>	<u> </u>	ita	BORING N DATE: GEOLOGIS							C
		RIG:		Ge	aprob	صر	DRILLER:		B·L					
							RIAL DESCRIPTION			40/F	D Re.	ading	(ppm)
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock Hardness	Colo	Material Classification	5 0 U 0 •	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	
							Concrete							
				1.5			Brown silty fine	-	Sangle Soil 2.0'-3.0'					Soil Sample
				2.5			Brown silty fine To med saved (Moist)		a.o'-3.o'					Soil Sampl. Time 0914 ID#
	4						Grus f. Sand (Wot)		Rec. 1.5	۵	0		Q	275 FB01020:
	,]							L_			
		\angle				ļ								,
	7			7.0° B.T.			W				3 &	ઇ		>5000 ppm in Borchole Wearbon filter
<u> </u>				$ \mathcal{B}.\mathcal{T}. $	<u> </u>	ļ	-	,			ļ			in workhole
						 	I	_	sot sween		<u> </u>			ycaroon.
				_		ļ			4.0 - 7.0		ļ_			411156
		<u> </u>	<u> </u>	-		ļ	W/L =4.7				<u> </u>		_	No ador
			<u> </u>	_			<u> </u>		-1- ()		<u> </u>	-		
	1				-			ļ	water Sample from 4.0-7.0		┼—	ļ	-	
					_	1		-	from 4.0-7.0	<u> </u>	<u> </u>	_		
	<u> </u>		<u> </u>	_		-			#276FBOld Time 80923	0.	7-	<u> </u>		İ
-	<u> </u>		1	1		i	ì	_	lime a OTO3	-	╀╌	-		Į
			 	$\frac{1}{1}$				_		-	┼-	┝	 	ł
_	ļ. <u></u>		 	4				<u> </u>		_	┼	 	┢	l.
\vdash	ļ		 	1	<u> </u>			<u> </u> -		-	┧	\vdash	\vdash	1
┢			1	┥		+	<u> </u>	<u> </u>		-	╁╌		╁	}
-			 	_				 - -		_	╁-	╁	-	1
			-	_	-			┼		├	+-	┼╌	┞	İ
			-	1			-	+-	 	\vdash	+-	┼-	╁╴	1
	· ·		1	-		-		-			-	+	-	-
		oring, ent			<u> </u>		[_L		<u> </u>			1	, J
	ide mor arks:		ng in 6 fo	ot intervals	@ borehole	e. Incr	ease reading frequency if elevated repor	ise re	ad. Drillir Background	_		_		1

Weil I.D. #:

No

Converted to Well: Yes

							BORING LOC	ž	Pag	_		ΟI _		
		NAM		ک	ite	2	BORING N	UМ	5-26-99	\mathcal{B}^{g}	82	}		
		NUMI			NOIS	6	DATE:	_	5-26-99					<u>'</u>
		COMI	PANY:		,		GEOLOGIS DRILLER:	51:						
DKIL	LING	INIG.		<u> </u>	corop				B.L.			_		, !
Sample	Depth	Blows /	Sample	Lithology		AIE	RIAL DESCRIPTION	ีย		PID/F	ID Ra	ading	(ppm)
No. and Type or RQD	(Ft.) or	6" or RQD (%)	Recovery / Sample Length		Soil Density/ Consistenc Y or Rock Hardness	Color	Material Classification	9000.	Remarks	Semple	Sampler BZ	Borehole"	Driller 82**	
							Concrete		MoTST					
	る			1.5			Brunsilty clay K Gray f. to med. Sond (Wet)		Soil Sample s	9	0		0	
							Gray f. to med. Sand		50i/Sample 5					
	4						(wet)		275FB02020	3				Rec. 7,2
		<u>/</u>							Time & 1020		L	<u> </u>	<u> </u>	
		/_								_	_		_	Bonehole
<u> </u>	7	/		7.0			<u>V</u>				_	_	\vdash	>5000 pp
	<u> </u>		1	B.T			•	• •	Stareen	<u> </u>	<u> </u>	_	<u> </u>	>5000 ppi W/o filter No odor
-		/-		-					from 4.0-7.0		<u> </u>	_	<u> </u>	no odor
-		/_				<u> </u>					-		-	
\vdash	<u> </u>	-		-				<u> </u>	Sampled Water	_	\vdash	┞	_	ļ
				-			•	_	from 4.0-7.0°	-	-	ļ	-	-
	<u> </u>]	<u> </u>	<u> </u>		}	2)GFBQAY	12	├	\vdash	-	ł
				1				-		├	┼	\vdash	+	1
 				1	·		1111.	-		-	┼-	\vdash	┼┈	1
<u> </u>			 	1		_	W/L = 4.65	-	<u> </u>	1	<u> </u>	<u> </u>	╀	1
<u> </u>			 	1				-		<u> </u>	╫	+	+-	†
			1	1			Note 3 Got Bit	-		\vdash	 	╁┈	+	1
			 	1			1	 	 	\vdash	╁╌	t	+	†
\vdash				1			stack in consister	H		 	+-	╁	-	1
<u> </u>			1	1		 	Towash ; tout:	 	1	┼─	+	\dagger	╁	1
	-			-			110 wash 11 out				+		+	1
			1					-	 	\dagger	+	-	+-	1
<u> </u>										-	+		+	1
_		-	er rock bri						. 5	مسلم م				
	ide mon		ng in 6 foo	ot intervals	@ borehole	. Incre	ease reading frequency if elevated repon	se re	ad. Drillin Background					7
Conv	vortor	to We		Yes		•	No Well I.I	\				_	_	_

Page	of	
* * 5		

		NAME	Ξ:	ری	tc 2	2	BORING N	UMI	BER: CNC271	30	<u> </u>			
		NUMI COMI	BER: Daniy:	<u></u> \n	18/26	<u>. </u>	DATE: GEOLOGIS	27.	2:36-94					
	LING		-AIN I.		- -			51.	B.L.					•
		1410.		<u></u>	ලාඅත					21245				
Sample	Depth	Blows /	Sample	Lithology	<u>^</u>	IA I E	RIAL DESCRIPTION	U		PID/F	ID Re	ading	(ppm) [
No. and Type o RQD	(Ft.) or	6" or RQD (%)	Recovery / Sample Langth		Consistenc y	Color	Material Classification	S C S *	Remarks	eidmeS	Sampler BZ	Borehole	Driller 82**	
				0.9			Concrete Brown fi Saved Wsom		Soil Sample	٥	0		ō	ک، ک
	2			1.3			Brown fi Savad ysom	e.	from 1.0-2.0		<u> </u>	L		Tmc: 1050
Ì		/					Gravel . Wet		#27 SFB\$38187	_				
	4	=					Gray F. Sand - WET		Rec. 1.4'	٥	0	\$	0	
7	{	/	•	}			1				l			
		$\overline{}$												•
	2	\angle		7.0			V		50mpled (30) to	-				
		/	ļ	B.T	ļ	Į		} · ·	4.0'-7.0			ļ		
] ·					Time : 1058					
		$\overline{/}$			-									
									set screen from 4.0'-7.0'					
				1					from 4.0'-7.0'					
		\angle					W/L=3.5	<u> </u>						
				 -			3		a/o W/o filter			ļ	_	
									=4500 ppm			<u>.</u>		
									in Bachole					
										<u> </u>	Ĺ	<u> </u>		<u>]</u>
		\angle								<u> </u>	<u> </u>	_		
ļ			<u> </u>	_						_	<u> </u>	<u> </u>	1	<u> </u>
<u> </u>		/		_		-	<u> </u>		le .	<u> </u>	-	┼	-	
	ļ <u>-</u>	/_		_		ļ		-		ļ		ļ	_	-
<u> </u>	<u> </u>	/		1			1	 		<u> </u> 	 	-	_]
	<u> </u>	/		-				-		1	<u> </u>	_	-	_
		/		4		<u> </u>		_		\perp	\perp	╀	_	-
									•					
			er rock br				and and in the second second	-	ad. Drilli	na /	ر دد ۲		_	•
	narks:	(680)		or milervals	. w solenoid	. mcл	ease reading frequency if elevated repor	ise (e	Background	-				

Well I,D. #:

No ___

Converted to Well: Yes

							BORING LOC	<u>3</u>	Pag	e	'	of _	
0	JECT	NAME NUM	E: BER: PANY:		te a	7	BORING N DATE: GEOLOGIS		BER: CUC27R 6-2-99	ø ^c	<u>. </u>	_	
-		RIG:	, , , , , , ,		Goog	2/10		J1.	B. Lewis				
			l		N	ATE	RIAL DESCRIPTION	T		PID/FI	D Rea	ding ((ppm)
Sample No. and Type or RQD	(FL)	Blows / 5" or RQD (%)	Sample Recovery / Sample Length		Soil	Color		U S C S	Remarks	Sample	Sampler BZ .	Borehole**	Driller BZ**
L		\angle					Concrete		Becouse				
<u></u>			<u> </u>	ఇ.ర			,	<u> </u>	concrete use				
									sof thick was	<u>. </u>			
	4								unable togot	-			
<u></u>				•		<u> </u>			soil sampler dou	ÞΛ			
									through concrete	ر			
	7		<u> </u>	7.0			W/L= 2.7'		Will sot some	-			
]				· '	from 4.0'-70	_			
					, 				2 get water		'		
						<u> </u>			Sample of				L
]				_	only			_	L
												L	L_
		\angle							Sampled Worts	<u>_</u>	_	<u></u>	_
		<u>/</u>						<u> </u>	a 5-1504640 /				_
									Time: 1620		<u> </u>		
				_							_	$oxed{oxed}$	
			<u></u>			ļ <u>.</u>					_	L	_
								<u> </u>			1	L	
				ļ									

hen rock coring, enter rock brokeness.

"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

Remarks:

Converted to Well: Yes No Well I.D. #:

							BORING LO	<u>3</u>	Pag	e _	_ ‹	of _			
PRO	JECT	NAME NUME COME	BER:	<u>Sí</u>	to 2	7	BORING N DATE: GEOLOGI		BER: CNC 27 B	<u>\$\$</u>	<u>-</u> —				
DRIL	LING	RIG:		G	CORD	e	DRILLER:	B. Laus							
					, N	IATE	RIAL DESCRIPTION			'ID/FI	ID/FID Reading (ppn				
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc Y or Rock Hardness	Color	Material Classification	⊃ % C % •	Remarks	Semple	Sampler BZ	Borehole"	Driller BZ**		
		\angle	_	-5			Asphalt								
				اسر دا			Sand o Grave								
			1	3.5			Yelkus Sandy Cluy		Moist .						
	4		ಎ.೪				Gray Silty Clay		Moist	ပ	၁	O	0		
-		\angle	-				Dark Gray Med To								
							course Sand W some								
	7		·	70			coarse gravel		wet						
				13.T			•								
							W/L=2.6		soil to moist						
									To get Soil Some	rle					
					•										
		/							Set Screen						
									from 4.0-7.0						
		/							44						
-									Sour/el Water 276FBØSØ407 Time: 1645						
									276FBØSØ407						
				j					Time: 1645						
						l									
]											

*When rock coring, enter rock brokeness.

**Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

**Remarks:

Converted to Well: Yes No Well I.D. #:

BORING LOG

		NAME	: Jan	CN	7, 3	rel	DATE:		718199 718199				
DRIL	LING	COMP	PANY:	م	hem Si'o		GEOLOGIS	ST:	K. Brand				
DRIL	LING	RIG:		5	trutsa	he	DRILLER:			70.71) Ac		=
8117	¥ } 1 } }	Por Por ROD (%)	Rempte Rempte Sempte Langua	Libratury Charge (Dupadit)) or Screened intered	Salt Derrothy Carrethy	Colo		J	Remarks	•	Samples 64		*
	_	/					Asphalt W/Guse						
	7]						<u> </u>	_	<u> </u>	Ш
	3		1]					Soturated	<u> </u>	┡-	Į.	Н
	4			1						<u> </u>	<u> </u>	Ļ	┦
	<u> </u>					<u> </u>				ا ـــــ	┿-	╁	┦
<u> </u>	-		ļ	-	<u> </u>	 	<u> </u>	+		╁	┰	╀	\vdash
<u></u>	ļ		 	4		 		+		-	╁	╀	H
	<u> </u>		 	-{		┼				╀	+	╀	╀┦
	 		,	┥		 		}_		╀╴	╁	╁	┾┥
-	1	\leftarrow		┥	-	╁─		+	···	┿	┾	┾	╂╾┥
-	-	 	 	┥	-	╂╾				+	┿	十	H
-	\vdash		╅──	┪	<u> </u>	╁╾	!	+		╁╴	+	十	+
	 - -	K >	1-	1		╁╌	 	+	<u> </u>	┿	\dagger	+	+-
-	┪		/	┪	ļ	+		+		十	+	十	╁┙
	+-			┪	-	┿		+-		十	+	╈	┿
	†		1	7		+		+		+	+	†	1
			1	1		†		+		+	十	+	T
			1	7		\top		_	1	_	+	+	+
						T			1		+	T	T
						1		7			Ť	T	
												Τ	\prod
			1			1		1			1	1	1
		1,	1			\top		1		1		T	T
									1	_	1	1	1
	rude m	onitor rea		brakersees Ipot Interva		4 Inc	rease reading fraquently If alavated cap	ensa re		ling			
	THEFK								Beckgroun	.d (t	pm): [_	
Cor	verte	N of be	V el i,	Yes	Tuy		No Well	I.D. #					

No Souples (Soil) Collected

BORING LOG

PRO	JECT	NAME	E :	ene	site	27	. B	ORING N	JMB	ER: 27130	7			
		NUME	BER:				D	ATE:		7/9/99				_
	-	COMP	PANY:	<u> Cel</u>	centic trutop		G	EOLOGIS	iT: .					
DRIL	LING	RIG:		<u> </u>	tru top	-oh		RILLER:				==		==
					M	ATE	RIAL DESCRIPTION	ON			PIDIPI	# Re	eding (<u></u>
Service Service Sype Service ROD	Depth (FL) er Rus No	86 87 87 87 800 700	Eample Recovery / Sample Langth	7.1	Sell Density/ Consistenc y er Rack Hardness	Color	Material Classifi		U S C S .	Remarks	91439	ZO JOSÉMOS	gerigens,.	Denke 6.5
;c	1	مسترسر				Pra	File Som	9		Alaist				
^	7]										
	3]						Sotumbel			ı.	
	4					V				J				
	3													
ļ]				•						Ц
			ļ	1										
			ļ	<u> </u>								<u> </u>		
<u> </u>											ļ		<u> </u>	Ц
<u> </u>		/		[~	<u> </u>		_	
											<u> </u>	<u> </u>	_	Ш
<u> </u>						<u> </u>						_	ļ_	
	<u> </u>			-	ļ <u>.</u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
 	 	/		1							1_	<u> </u>	-	
<u> </u>		/_	ļ	4		ļ			<u> </u>		-	<u> </u>	<u> </u>	igspace
 	_	/	 -	1	ļ	 					_}_	-	┡	}_
ļ	<u> </u>		<u> </u>	-		<u> </u>			ļ			ļ.	Ļ _	
	1_		}	4		 						1	<u> </u>	
		/ _,	ļ	1		-					-	 -	╁	╁┙
<u> </u>	-		-	1	<u> </u>	-			<u> </u>		-	 -	╄-	
 	<u> </u>	K	 	1		-			<u> </u>		+	+-	+	 -
<u> </u>			1	1		-		··	-	<u> </u>	\perp	-	1	╁—
<u></u>	<u> </u>		 	_			ļ <u>.</u>		<u> </u>	ļ	4	4-	1	 -
	igspace	//		_		_						\downarrow	1	
L							<u> </u>							
⊷ Ind Ren	ude mo narks	nitor read		ot interval			ease reading frequency K		196 fe	id Dr Backgrou	illing / Ind (p		_	
Con	verte	d to W	eli.	Yes	Tun	 	No	Well I.	D. #					
					plo	, incl	No Mujer							

OVERBURDEN MONITORING WELL SHEET

ROJECT CKE		N: 517= 77	DRILLER K. 13va	uel
ROJECT NO.	BORING		METHOD: DPT	
EVATION	DATE	8 4 44	DRILLING	
ELD GEOLOGIST			DEVELOPMENT: NA	
				
		ELEVATION OF TOP O	F SURFACE CASING:	****
	◄ ———	ELEVATION OF TOP O	F RISER PIPE:	
	, [◀──	- STICK-UP TOP OF SUI	RFACE CASING:	·
	— ———————————————————————————————————	STICK-UP RISER PIPE:		
1 1	│ 	I.D. OF SURFACE CASI	NG:	
1	 i	TYPE OF SURFACE CA	.SIN <u>G:</u>	
GROUND Y		TYPE OF SURFACE SE	AL: Concrete - Fl	ush
ELEVATION		<u></u>		
a de la constante de la consta		SINCE BIRE I D.		
	- 3	→ RISER PIPE I.D.; TYPE OF RISER PIPE:	40 PUC	
	į.	THE OF RISER PIPE:	40700	
	4	- BOREHOLE DIAMETER	:	_
		TYPE OF SEAL:		
		•		
		ELEVATION / DEPTH O		
	-	TYPE OS SEAL: F	ine Same	
				-
		T DEPTH TOP OF SAND	PACK:	1.
		,		
		ELEVATION / DEPTH T	OP OF SCREEN:	12.
\$ 20 mm		T V05.05.5055V	PUC-40	
		TYPE OF SCREEN:	700-40	-
		SLOT SIZE X LENGTH:	0.01" K10'	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(A. 1)		LD. OF SCREEN:	1.25"	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Meelium	
		TYPE OF SAND PACK:	Meelin	
a'				
Vicentical		- ELEVATION / DEPTHB	OTTOM OF SCREEN:	112.
			OTTOM OF SAND PACK	112.
		TYPE OF BACKFILL BE	LOW OBSERVATION	
		WELL'		
		ELEVATION / DEPTH O	F HOLE	- 1/2

E	'nSa	 9f6	-/	A//	en	&	Но	shall	Monitoring Well	NBC	E065001
Projec	t: <i>20</i> 1	EE-	Na	ral Ba	se Ch	arlesto	202		Coordinates: 23/7543,39 E, 377	256.57 N	
	ion: Ch								Surface Elevation: 7.1 feet ms/		
Starte	ed at 10	000 ar	12-	7-95					TOC Elevation: 6.92 feet ms/		
Comple	eted at	1150	on 12	-7-9	5				Depth to Groundwater: 2.78 fe	et TOC	Measured: 3/13/96
Drilling	Method	t 42	5"1	7.5	" (OD)	HSA H	ith so	it spoon	Groundwater Elevation: 4.14 fe		
	Compa								Total Well Depth: 12.5 feet bgs	-	
						_			Well Screen: 25 to 11.5 feet bgs	;	
DEPTH INFEET	SAMPLY SA								OGIC DESCRIPTION	ELEV. (ft-mst)	WELL DIAGRAM
10 15 15 15 15 15 15 15 15 15 15 15 15 15	AS TO SERVICE STATE OF THE SER		11	85	014	A50	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	Clay: dark gray-bl soft, moist to wet, Marsh clay. Clay: Marsh clay as Peat: dark brown wand grass fibers, s	gravelly, muddy, dry to moist. ack, high organic content, fat, low plasticity, H ₂ S odor	31 7 28 19 - 16 - 28 - 39	end cap end cap filtritititititititititititititititititit
20-											

Page I of I

Pro Loc Sta Con Drift	ject: 2 ation: rted a apleted ng Mel	ZONE I Charle 1 1015 1 at 12 thoct mpany	E - Neston, on IO- OO on 4.25"	aval B SC -26-9 10-26 ID (7	ase 07 5 5-95 5-00,	nariest	on with sp	oshall ott spoon	Coordinates: 23/7469.31 E, 377ff. Surface Elevation: 8.3 feet msi TOC Elevation: 8.15 feet msi Depth to Groundwater: 2.65 feet Groundwater Elevation: 5.50 fee Total Well Depth: 12.5 feet bgs Well Screen: 2.5 to 11.5 feet bgs	2.29 N et TOC et msl	Measured: 3/13/96
DEPTH INFEET	LITHOLOGIC	ANALYTICAL SAMPLE	SAMPLE NO.	X PECOVERY	PID (ppm)	GRAPHIC LOG	SOIL CLASS	GEOLG	GIC DESCRIPTION	ELEV. (ft-mst)	WELL DIAGRAM
5							ದಕ್ರದ		andy, with wood fragments, ark gray to black, stiff, silty,	33	1) slot screen PK- PVC Riser PVC Ris
10-	I		2	100	o		ගු (ස්ගුප්ප)ප්ප)	Clay: gray, with incifine to fine), well -: Sand: gray, very fill with some clay pod Clay: dark gray to laminae, low plasticity wet.	reased sand content (very sorted, gray.		
15-			4	87	O		OH OL PT		above. biden to orange wood fibers th organic content, soft, wet,	-4.6 -5.3 -5.9	end cap

EnSafe/Allen & Hoshall Monitoring Well NBCE065004 Project: ZONE E - Naval Base Charleston Coordinates: 23/744143 E, 377076.90 N Location: Charleston SC Surface Elevation: 8.3 feet msl Started at 1055 on 10-18-95 TOC Elevation: 8.11 feet ms/ Completed at 1140 on 10-23-95 Depth to Groundwater: 212 feet TOC Measured: 3/13/96 Drilling Method: 4.25" ID (7.5" OD) HSA with split spoon Groundwater Elevation: 5.99 feet msl Driling Company: Atlantic Driling (SC cert #1210) Total Well Depth: 12.5 feet bas Geologist: T. Kafka Well Screen: 25 to 115 feet bgs (# TH SQ WELL DIAGRAM ANALYTICAL SAMPLE GRAPHIC LOG LITHOLOGIC SAMPLE Q.A.S.S X RECOVER! SAMPLE NO. 8 GEOLOGIC DESCRIPTION EE, <u> 원</u> Surface conditions: concrete pad Sch. 40 PVC, 0.01 slot screen 5 OL Clay: black, silty, low plasticity, soft, wet. -28 SM Sand: light to dark gray, very fine to fine, silty, moderately well sorted, trace clay, wet. 45 5.8 #1 sand filter Clay: dark gray to black with light gray slity 앥 \Box laminae, low plasticity, some wood and grass fibers, soft, wet. 2 100 10 4.1 왡 Clay: as above with extensive yellow to orange brown wood/grass fibers. PT Peat: brown to orange brown, extensive wood 3 100 16.6 58 and grass fibers, silty, wet. 15. 20

Project: 20 Location: 0 Started at Completed a	DNE E - N Dharlestor 1030 on F	Naval Ba on, SC 1-19-96	ase Oh			shall	Monitoring Well Coordinates: 23/742131E, 37718 Surface Elevation: 8.5 feet ms/ TOC Elevation: 8.41 feet ms/ Depth to Groundwater: 6.97 feet	1.32 N	E06504D Measured: 3/13/96
Drilling Metho Drilling Comp						"ID coring bit) ert #889)	Groundwater Elevation: 144 fee Total Well Depth: 39.7 feet bgs	et msi	
Geologist: A					-		Well Screen: 29.8 to 39.2 feet t	gs	
DEPTH IN FEET LTHOLOGIC SAMPLE	ANALYTICAL SAMPLE SAMPLE NO.	* HEDOVERY	PIO (ppm)	GRAPHIC LOG	SOIL CLASS	GEOLO	OGIC DESCRIPTION	ELEV. (fl-mst)	WELL DIAGRAM
				0000	GM GM	sand, wet.	concrete cobbles and silty medium o medium, with some silty clay,	6.5	
					왕	moist. Clay: dark gray, fa		5.5 5	
5-	1	70	11.5		OL	Clay: black, fat, mo	ist, marsh clay.	3.5	Riser ————————————————————————————————————
10-					PΤ	Peat: brown, high o	rganic content.		0 PVC
					SW	Sand: gray, fine to	medium, no fines, moist.		
20-	2	86			SW	Sand: as above.	· .	6.5	######################################

E	EnS	Sat	e/	'All	en	&	Но	shall	Monitoring Well	NBC	E06504D
Proi	ect: Z	ONE	- Ne	eval Ba	se O	arlesto	חמ		Coordinates: 23/742131 E, 377/19	332 N	
		Charle							Surface Elevation: 8.5 feet msi		
		1030							TOC Elevation: 8.41 feet msl	-	
Com	pieted	at 120	XX on	1-19-9	96				Depth to Groundwater: 6.97 fee	et TOC	Measured: 3/13/96
Dr#r	ng Met	hodt /	Rotas	onic (l	55° Q	D casir	19, 38	"ID coring bit)	Groundwater Elevation: 144 fee	et msl	
								ert #889)	Total Well Depth: 39.7 feet bgs		
Geo	logist:	B, Bly	the						Well Screen: 29.8 to 39.2 feet b	ogs	
OGPTH INFEET	LITHOLOGIC SAMPLE	ANALYTICAL SAMPLE	SAMPLE NO.	X RECOVERY	PJO (ppm)	GRAPHIC LOG	SOIL CLASS	GEOLO	GIC DESCRIPTION	ELEV. (It-ms)	WELL DIAGRAM
	\bigvee					0.0000		Peat: yellow to bro	₩n.	-13.5	PVC Riser ————————————————————————————————————
•	\bigwedge						PT			15.4	10 Sch. 40 PVC Riser —
25-			3	88	٥	27.72				16.5	Q
							SW	Sand: gray, fine to	medium, no fines, moist.	20	2" 10 Sch. 40 i
30-							SM PT	to stiff, molst.	ck, intermixed with peat, firm	-23	
-	$/ \setminus$				 	0.0.0	SM SM	Sand: gray to brow	rn, moist.	25	VC screen ———————————————————————————————————
35-			4	100	0		ଫ	clay; increase in sa	f, moist—dewatered marsh and content with depth to sand of medium to high	26.5	0.01 slot PVC screen
-	\bigvee						sc	Sand: medium to co	parse, clayey.		end cap
40							전환 전 전 전 전	Lag deposit: grave hash, silty, sandy.	lly PO ₄ nodules and shell	30.3	

E	En _S	 Sai	e/	'All	en	&	Ho	shall	Monitoring Well	NBC	E06504D
Proi	ect: Z	ONE	- Na	val Ba	se Ch	ariesto	n	-	Coordinates: 23/74213/E, 377/19.	32 N	_
	ation								Surface Elevation: 8.5 feet msl		
	rted at								TOC Elevation: 8.41 feet msl		
	pleted								Depth to Groundwater; 6.97 fee		Measured: 3/13/96
								"ID coring bit)	Groundwater Elevation: 144 fee	t msl	
				ce En	vironn	ental	(SC C	ert #889)	Total Well Depth: 39.7 feet bgs		
DEPTH INFEET	LITHOLOGIC SAMPLE			X RECOVERY	PID (ppm)	GPAPHIC LOG	SOIL CLASS	GEOLG	Well Screen: 29.8 to 39.2 feet by	ELEY. (11-ms)	WELL DIAGRAM
45-		8	5	100	0		СН	shell hash laminae throughoutdewa			
50-			8	100				above.		39	
55–											
60-											

Project: ZONE E - Naval Base Charleston Coordinates: 23/14/239 E, 377/6228 N Location: Charleston, SC Surface Elevation: 8.5 feet msl Started at 1500 on 10-26-95 Completed at 1500 on 10-26-95 Dring Method: 425" ID (7.5" OD) HSA with split spoon Dring Company: Attantic Dring (SC cert #12/0) Geologist: T, Kafka Polyman Method: 425" ID (7.5" OD) HSA with split spoon Geologist: T, Kafka Well Screen: 25 to 115 feet bgs GEOLOGIC DESCRIPTION Surface conditions: concrete alleyway. Surface conditions: concrete alleyway.		E065005	/BC	Monitoring Well N	shall	H0	\$	en	'All	fe/	Sai	Ens	l d
Surface Elevation: 8.5 feet ms			28 N	Coordinates: 231741239 E. 377162.		lon	anesto	se Ch	val Ba	= Na	ONE	ect: Z	Proi
Started at 1300 on 10-26-95 Completed at 1500 on 10-26-95 Depth to Groundwater: 5.48 feet TOC Measured: 3/13/86 Driling Method: 4.25' ID (7.5'' CO) HSA with spit spoon Groundwater Elevation: 2.74 feet msl Driling Company: Attantic Driling (SC cert #1210) Geologist: T. Kafka Wet Screen: 2.5 to 11.5 feet bgs WELL DIAGRAM HELL DIAGRAM Surface conditions: concrete alleyway.	· · · ·					-	-						
Completed at 1500 on 10-26-95 Depth to Groundwater: 5.48 feet TOC Depth to Groundwater: 5.48 feet TOC Depth to Groundwater: 5.48 feet TOC Depth to Groundwater: 5.48 feet TOC Depth to Groundwater: 5.48 feet TOC Depth to Groundwater: 5.48 feet TOC Measured: 3/13/86 Depth to Groundwater: 5.48 feet TOC Measured: 3/13/86 Depth to Groundwater: 5.48 feet TOC Measured: 3/13/86 Depth to Groundwater: 5.48 feet TOC Measured: 3/13/86 Depth to Groundwater: 5.48 feet TOC Measured: 3/13/86 Total Well Depth: 12.5 feet bgs Well Screen: 25 to 15 feet bgs Well DIAGRAM FLUID OF TOTAL Well Depth: 12.5 feet bgs Well DIAGRAM FLUID OF TOTAL Well Depth: 12.5 feet bgs Well DIAGRAM Surface conditions: concrete alleyway.			_					5					
Driling Method: 425' ID (7.5' OD) HSA with spit spoon Groundwater Elevation: 274 feet msl Total Well Depth: 125 feet bgs Geologist: 7. Kafka Well Screen: 25 to fl.5 feet bgs WELL DIAGRAM HELL DIAGRAM GEOLOGIC DESCRIPTION Surface conditions: concrete alleyway. Surface conditions: concrete alleyway.	6	Meanired 3/13/06	TOC										
Driling Company: Attantic Driling (SC cert #120) Geologist T. Kafka Well Screen: 25 to fl.5 feet bgs Well DIAGRAM HELL DIAGRAM HELL DIAGRAM WELL DIAGRAM SST D TILL SS		Picasalea 5/6/30			H annan	مم خاند .	LICA .					<u> </u>	
Geologist: T. Kalka Well Screen: 25 to 115 feet bgs WELL DIAGRAM WELL DIAGRAM WELL DIAGRAM WELL DIAGRAM Symptomic Strate on ditions: concrete alleyway.		<u>_</u>	nisi			•			_				
MELL DIAGRAM SAMPLE NO SAMPLE N					<u>''</u>	5 (# L/),	SL CH	Wig i	IDC LIT				
Solt a SawPit Sa				Well Screen: 25 to 115 feet bgs			T			TKA	I.Ka	logist:	Ge0
	M	WELL DIAGRAM	ELEV. (代-ms)	OGIC DESCRIPTION	GEOLG	SOIL CLASS	GRAPHIC LOG	PIO (ppm)	X RECOVERY	ON ETHINGS	ANALYTICAL SAMPLE	LITHOLOGIC SAMPLE	DEPTH IN FEET
1 80 0 OH OH OH OH OH OH OH OH OH OH OH OH OH	grout		-31 -23 -5 -8 -25	o gray, very fine to fine, orted, silty, some clayey pods, o black, silty, moderately o dark brown, with wood fibers to derately plastic, wet. soft, silty, with grass and overy fine to fine, well-sorted, and wood fibers, saturated;	Sand: dark gray to moderately well-so wet. Clay: dark gray to plastic, soft, wet. Clay: dark gray to and grass, silty, moderately well-soft, wet. Peat: dark brown, wood fibers, wet. Sand: light gray, visilty, with grass and	전 구 구 () 전 () () () () () () () () (0	60	1			10-

1	Ens	Sai	e/	'All	en	&	Но	shall	Monitoring We	II NBC	E065007
Pro	ject: 2	ONE E	- Na	val Ba	se Ch	arlesto	מא		Coordinates: 23/7497.72 E, 37	77055,81 N	
Loc	ation:	Charle	stan,	SC					Surface Elevation: 8.6 feet #	<u></u>	
Sta	rted at	0900	an 9	-11-96					TOC Elevation: 8.31 feet msl		
Con	pleted	at 10	30 on	9-11-9	6				Depth to Groundwater: 283	feet TOC	Measured: 10/16/96
Drin	ng Met	hoct ·	4.25"	D (7.5	5' 00)	HSA H	ith spl	ft spoon	Groundwater Elevation: 5.48	feet msl	
	ng Con								Total Well Depth: 13.3 feet by	75	
Geo	ologist;	J Co	oey						Well Screen: 3.3 to 12.3 feet i	bgs	
DEPTH INFEET	LITHOLOGIC	ANALYTICAL SAMPLE	SAMPLE NO.	X RECOVERY	PIO (ppm)	GPAPHIC LOG	SOIL CLASS	GEOLO	OGIC DESCRIPTION	ELEV. (ft-mst)	WELL DIAGRAM
		107					-	Surface conditions	: Asphalt.		1 1 2 3
I			2						ppm in cuttings from 2.0 to		PVC Riser — PVC Ri
5-		,					SP	Sand: gray; fine to throughout.	very fine, shell hash	4.6	
	<mark>├-</mark> ┸-		۱ ا	100						3.1	1 screen
10-			2	100			SP ML	Sand: gray; very f Silt: black; clayey. PID reading spike 10.0 to 13.0 ft.			—— 2" 10 Sch. 40 PVC, 0.01 stot screen
15-			3	100			SP	Sand: It.gray; very fragments. Clay: dark gray-b	fine to fine; w/shell lack; silty.		end cap
20-							•				

APPENDIX C

FIELD SAMPLING DATA SHEETS

SOIL & SEDIMENT SAMPLE LOG SHEET

NO126 Sample ID No.: 275LB070/ Project Site Name: Sample Location: CNCB07 Project No.: Sampled By: P. Calligan C.O.C. No.: Surface Soil X Subsurface Soil Sediment Type of Sample: [] Other: X Low Concentration QA Sample Type: High Concentration GRAB SAMPLE DATA: Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Date: 10/12/99 1700 Light Brown silty sand, moist 1' to 2' Method: Hand Auger Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range In ppm): SAMPLE COLLECTION INFORMATION: Anaiysis Container Requirements Collected Other 8260 VOAS 4 . Encores 8270 PAHS 1 - 402. Jar Metals 1 - 202, Jar TPH 1-802, Jor 1-402. Jar From other Jars TOC FOC Grain Size 1- 32 02. Jar OBSERVATIONS / NOTES: MAP: Signature(s): Paul E. Calf Circle if Applicable: MS/MSD Duplicate ID No.:

GROUNDWATER LEVEL MEASUREMENT SHEET

்.ஓ்க€ ⊷ .	LEALER	450133			SOUTH A STATE OF THE			
Project Nan	ae:		site 27		Project No.: Personnel:	ϕ	26	
Location:		ر ہن	c 2.7		Personnel:	Jeff Al	eyander /	Jenniker Elli
Weather Co	nditions:	<u> </u>	No	rere	Measuring De	vice:		
Tidally Infl	uenced:	Yes	No	nice.	Remarks:			
Well or Piczometer Number	Date	Time	Elevation of Reference Point (feet)*	Total Well Depth (feet)*	Water Level Indicator Readin (feet)*	Thickness of Free Produc (feet)*	Groundwater Elevation (feet)*	Comments
MPI	9/23	8.64		11.68	1.94			
NBCE-065-003 NBCE-065-003	9/23	B:55		13.16	3.32			
NBCE - 065 - 264	7/22	857		12.43		<u> </u>	<u> </u>	
\} (} \ NBCE-645-64D	4/23	359		12.41	2,33			
¥ 4 D NBCE-065-005	7/23	901		39.62	1			
+ # 5	9/23	905		12.40	3.22	-		
		ļ			<u> </u>	<u> </u>		
			1	-		<u> </u>		
		 		<u> </u>	<u> </u>		<u> </u>	·
	-	 				 		
		 	<u> </u>			<u> </u>		
		<u> </u>	 	 	 	1		
				 			 	
			.		 		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	Ţ						<u> </u>
								
		1						
	-		ļ					
					-	····		
	 							
	 		·					
	1							
* All measurements	to the nearest	0 01 foot					Pag	e of

GROUNDWATER SAMPLE LOG SHEET

								Page	1 of 1
₩ Monito	: stic Well Data oring Well Data	_Zone NOI		ik 27		Sample Sample C.O.C. Type of	No.: Sample;	216LWG	MOI
	Well Type: ample Type:			····			Concentra Concentra		
SAMPLING DA	TA:				,				
Date: 9-23		Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 16+	5-1050	Visual	Standard		Degrees C	NTU	mg/l	%	NA
Method: Low		cleac	7.19	10.304	a6.1	-10	1.34		
PURGE DATA:				1		ı <u></u>	r – 		<u> </u>
Date: 9-23		Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other
Method:	Flow	Initial		5.36		103	0.84		
Monitor Reading	g (ppm):	1	7.07	722.0	25.9	-10	1.03		
Well Casing Dia	meter & Material	2	7.14	7.304	26.0	-10	0.97		~
Type:	PVC	3	7.19	7.30	46.1	-10	1.34		
Total Well Dept	h (TD): \1,48								
Static Water Le	vel (WL): .99								
One Casing Vol	ume(gal/L): .6				۸۲	1			
Start Purge (hrs): A 3 3				T	7			
End Purge (hrs)									
	ne (min): 28 m. /								
	ed (gal/L): ~\$.5								
	ECTION INFORMA					l			
****	Analysis		Preser	vative		Container R	equirements		Collected
8260	•		HC		3	x 40 v	nl		Lyc.S
PAH					δ,	x II			71
Metals			HV			X			
	d Methane		HO		3	x 401	<u>uj</u>		
Anions					1	Х			Y
									ļ
}			 -						
									<u> </u>
					<u>,</u>				
									
									
OBSERVATION	S / NOTES:							_	
	9.67								
1	•								
Circle if Applic						Signature(s):	M	11
MS/MSD	Duplicate ID No.:					12	h 1	M	D

Page___ of ___

SAMPLING DATA: Date: 9-23-99 Color pH S.C. Temp. Turbidity DO Sall	
	nity Other
	NA
Method: Low Flow	<u> </u>
PURGE DATA:	
Date: 9-23-99 Volume pH S.C. Temp. (C) Turbidity DO Sali	nity Other
Method: Low Flow Initial 6.17 .583 25.5 Ø 0.25 -	- 0,
Monitor Reading (ppm): 1 (4.3) .586 26.2 Ø 1.29 -	- 1.47
Well Casing Diameter & Material 2 4.55 . 626 24.0 43 2.48 -	- a.94
Type: 2" PVC 3 6.57 .610 25.7 12 2.46 -	- 4.41
Total Well Depth (TD): 12.40	
Static Water Level (WL): 3,22	-
One Casing Volume(gal/L): 1.47	
Start Purge (hrs): 0922	
End Purge (hrs):	
Total Purge Time (min): Total Vol. Purged (gal/L):	-
SAMPLE COLLECTION INFORMATION:	
Analysis Preservative Container Requirements	Collected
8260 HCI 3x 40 m/	
PAH - 2x 1 L	-
Metals HNO3 /x	
Dissolved Methane HCI 3 x 40 ml	
Anions /x	
OBSERVATIONS / NOTES:	
0938: Well purged dryand pump turned off	
0938: Well purged dryand pump turned off 0943: Well pump restarted 0948: Well purged dry and pumped turned off.	
0938: Well purged dryand pump turned off 0943: Well pump restarted 0948: Well purged dry and pumped turned off. Circle if Applicable: Signature(s):	

Zone E Site 27 NOIZ6 Project Site Name: Sample ID No.: 276LX0401 Project No.: Sample Location: Sampled By: C.O.C. No.: [] Domestic Well Data [] Monitoring Well Data Type of Sample: [] Low Concentration [] Other Well Type: [] QA Sample Type: [] High Concentration SAMPLING DATA: 9-23-99 Date: Color pΗ S.C. Temp. Turbidity DO Salinity Other Time: 1010 Visual Standard mS/cm Degrees C NTU mg/l NA CRUV Low Flow Method: 0.557 27.7 PURGE DATA: 9-23-99 Date: Volume Turbidity Нα S.C. Temp. (C) DO Salinity Other 1.21 Low Flow 20 Initial 6.96 0.529 27.1 Method: 7.15 0.54 24 2.08 1. 61 1 26.7 Monitor Reading (ppm): 7.20 0.548 7, 22 Well Casing Diameter & Material 27.0 Type: 7 11 PVC 1.99 7.17 0.553 12 3 Total Well Depth (TD): /2,41 Static Water Level (WL): 2.33 One Casing Volume(gal/L): 1. 💆 Start Purge (hrs): 09/8 0958 End Purge (hrs): Total Purge Time (min): 40 Total Vol. Purged (gal/L): ၂ 시기 SAMPLE COLLECTION INFORMATION: Preservative Collected Analysis Container Requirements HCL 8760 PAH 4200 Metals **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD Duplicate ID No.:

Page _____ of _____

Project Site Name:	Zone E Site 27				Sample ID No.: 27GLX			1001
Project No.:	NDI				Sample Location: NBCE-Ø			65-04D
					Sample	a By:		
[] Domestic Well Data					C.O.C.			
[] Monitoring Well Data					• •	Sample:		
[] Other Well Type:						Concentra		
[] QA Sample Type:					[] Higi	n Concentr	ation	
SAMPLING DATA:		-						
Date: 9-23-99	Color	pН	s.c.	Temp.	Turbidity	ро	Salinity	Other
Time: 02	Visual	Standard		Degrees C	NTU	mg/l	%	NA
Method: Low Fow	Clear	6.74	1.48	23.2		1.58	-	
PURGE DATA:								
Date: 9-23-99	Volume	рH	s.c.	Temp. (C)	Turbidity	00	Salinity	Other
Method: Low Flow	Initial	6.67	1.38	23.2	27	1.73	~	
Monitor Reading (ppm):	1	6.73		23.1	33	1.54)	1.6
Well Casing Diameter & Material	2	6.82		23.2	28	2.36	$\overline{}$	3.1
Type: 2" PVC	3	6,74		23.2) ¥	1.58		4.8
Total Well Depth (TD): 39.62	<u> </u>	0, 74	11 7 3	2 3. 2	, ,		-	1.0
Static Water Level (WL): 5,54								
One Casing Volume(gal/L): /,6	-							
Start Purge (hrs): 0920	_				<u> </u>			
				_				<u>,</u>
Total Purge Time (min): 32								
Total Vol. Purged (gal/L): ၂. 8								
SAMPLE COLLECTION INFORMA	TION:					_		,
Analysis		Preser			Container R	Requirement	5	Collected
82%0		<u>Hc</u>	·		<u> </u>			1/
PAH								\ <u> </u>
Metals		אא	<u>U3</u>					
		<u> </u>	•	<u> </u>				1
		 	- "					-
				<u> </u>				
			_					
					<u> </u>			_
			-		_			1
		_						
		1		_				
OBSERVATIONS / NOTES:		ı	_	•				•
·								
* Purging ousing	Screen	value	00 450	مدن ممرق	infl s	Scrania		
7.3.3	Derecan	A OLOM!	(C) 423	, ming	1074.	screen.		
Circle if Applicable:					Signature(s):		
MS/MSD Duplicate ID No.:			_					

Page___ of ___

Project Site Name: Project No.:	Zone E Sile 27 NOIZLO				Sample ID No.: 27 Sample Location: NBC			X0170/ 65-007
[] Domestic Well Data ★★ Monitoring Well Data [] Other Well Type: [] QA Sample Type:					C.O.C. I Type of [] Low	•		
SAMPLING DATA:								
Date: 9-22-99	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other
Time: 1/26	Visual	Standard	mS/cm	Degrees C	שדע	mg/l	%	NA
Method: Low Flow	Uenr	6.93	.74	28.2	11	1.53		
PURGE DATA:				,	,			
Date: 9-23-99	Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: Low Flow	Initial	6.17	. 855	26.3	8	1.32		
Monitor Reading (ppm):	1	6.76	.770	28:1	10	1.27		
Well Casing Diameter & Material	2	6.85	.778		9	1.01	<u> </u>	1
Type: 2" PVC	3	6.93	.761	28.2	11	1.53	-	
Total Well Depth (TD): 13,16				_	٠.			
Static Water Level (WL): 3.32								
One Casing Volume(gal/L): 1,57								
Start Purge (hrs): Ø 5								
End Purge (hrs): 1054								
Total Purge Time (min): :35								
Total Vol. Purged (gal/L):								
SAMPLE COLLECTION INFORMA	TION:						<u>.</u>	
Analysis		Preser	vative		Container R	equirements	}	Collected
8260		HC	1	-		tom1		
PAH				2	- x 1	HA.		
Metals		HN	03		I X Z	31/1		
Dissolved Metals		HC		-	} ×	40 ml		
Auions			<u> </u>		lγ.	5 ltr.		
				<u> </u>				ļ
		1						
								+
		+						
		1						
	• •	 						
OBSERVATIONS / NOTES:		-1		<u> </u>				- !
							<u> </u>	
1	3.16 3.32 .84	. 5 4	2 34 ₂ _					
1	3.32	9.0	رد ۱۹					
1	ZU	1	2					
1	. 0 1	590	4					
	9845							
Circle if Applicable:	1	371			Signature(s):		
MS/MSD Duplicate ID No.	•							

Page of

Zone E Sik 27 27GLX Ø3Ø1 Project Site Name: Sample ID No.: Project No.: NO126 Sample Location: NBCE-00500 Sampled By: [] Domestic Well Data C.O.C. No.: 队 Monitoring Well Data Type of Sample: [] Other Well Type: [] Low Concentration [] QA Sample Type: [] High Concentration SAMPLING DATA: Date: 4-23-99 S.C. DO Color ρН Temp. Turbidity Salinity Other Visual Standard mS/cm Degrees C NTU mg/l NA 1010 8.94 Method: Peristaltic clear 0.671 27.3 01 sZE NEINWOOD PURGE DATA: Date: 9-23-99 Turbidity DO Volume рΗ S.C. Temp. (C) Salinity Other Method: Peristottic Initial 82.GK つ・ラノ ವಾ. ಶ ര 1 Monitor Reading (ppm): -10 Well Casing Diameter & Material .93 刻)り Type: a" PYC 3 Total Well Depth (TD): 12.43 49.8 10 5 Static Water Level (WL): 2.24 One Casing Volume(gal/L):\ Start Purge (hrs): 0904 End Purge (hrs): 957 Total Purge Time (min): 33 mW Total Vol. Purged (gal/L): ~ (₀ ১১ SAMPLE COLLECTION INFORMATION: Analysis Container Requirements Collected Preservative 3) 40 ml rials TCL Volatiles HAG くめ MCTZIC **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD Duplicate ID No.:

Tetra Tech NUS, Inc.

Page 1 of 3

Project Site I	Name: てい	18E S	ife 2	7		Sample ID No	o.: 276	LM0101	\
Project No.:	NO126			•		Sample Local		W 01	— (
Sampled By:		NT & J	TM	1		Duplicate:			
Field Analyst		4 WLT	JA			Blank:	Ħ		
	hecked as per (hale).	Mr.		ш		1
	Control of the contro							Carlos (410)	CODAC.
	-23-99		T			1			
	1050	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	pH
Time:		(Visual)	(+/- mv)		(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:	LOW Flow	Clear	Citation to the control of the	0,304	26.1	-10	1.34		7.19
	CTION/ANALYSIS II	YPORMATIO!							gerena.
Dissolved Ox Equipment:	ygen: HACH Digital Titrato	TOY-DT (CHEMetric	e /Pange:	0 = [_mg/L)		Analysis Time:	1108	į
Ечиртен.	TACH DIGITAL TRIBE	HOX-DI (CHEMENIC	s (Natige.	<u>V</u>)	Alidiyala Lillie.	71 -	-
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration]
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L].
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	= mg/L]
CHEMetrics: 0	· 4 mg/L			-					
Notes:					_				
Alkalinity:							Analysis Time:	1034	_
Equipment: (HACH Digital Titrato	or AL-DT	CHEMetric	s (Range: _	mg/L)	1	Filtered:		
\								_	
Range Used:	Range	Sampie Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration	
	10-40 mg/L	100 ml	0.1600 N	0.1		&	x 0.1	= mg/L]
	40-160 mg/L	25 ml	0,1600 N	0.4		&	x 0.4	= mg/L	_
1	100-400 mg/L	100 ml	1.600 N	1.0	0	& <u>241</u>	x 1,0	= 241 mg/L	
	200-800 mg/L	50 ml	1,600 N	2.0		&	x 2.0	≖ mg/L	
	500-2000 mg/L	20 ml	1,600 N	5.0		&	x 5.0	= mg/L	╛
	1000-4000 mg/L	10 ml	1.600 N	10.0		&	x 10.0	= mg/L	
							_		
	Parameter:	Hydroxide	Cart	onate		arbonate]		
	Relationship:	0	Ð	•	2	<u>41</u>]		
CHEMetrics:	mg/L								
Notes:			_						_
Standard Additions	s: Titran	t Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.:	_	_
Carbon Dioxi	de:								
Equipment:	HACH Digital Titrati	OY CA-DT)	CHEMetric	s (Range: _	mg/L)	Analysis Time:	1102	_
`					_				
Range Used:	Range	Sample Vol.	Cartridge	Muttiplier		Titration Count		Concentration	n
	10-50 mg/L	200 ml	0,3636 N	0.1	}		x 0.1	= mg/L	.]
	20-100 mg/L	100 ml	0,3636 N	0.2			x 0.2	= mg/l	-
	100-400 mg/L	200 ml	3.636 N	1.0			x 1.0	≖ mg/l	
V	200-1000 mg/L	100 ml	3.636 N	2.0		100	x 2.0	= 212 mg/l	
CHEMetrics:	mg/L								
Notes:									
Standard Additions	s: Titrar	nt Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.:		

FIELD ANALYTICAL LOG SHEET

GEOCHEMICAL PARAMETERS

Page 2 of 3 Tetra Tech NUS, Inc. Sample ID No.: 276L m 141 Project Site Name: Sample Location: (NC27M4-1 Project No.: Sampled By: JA/JE/JM/JE Duplicate: Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): Sulfide (S2): Analysis Time: (031 **HS-C Color Chart** Equipment: DR-700 DR-84.0 HS-WR Color Wheel Program/Module: 610nm 93 Other: 6.62 Concentration: Filtered: Notes: Sulfate (\$042-): Equipment: DR-700 DR-8__ Other: Analysis Time: Program/Module: Concentration: Filtered: mg/L Standard Solution: Results: Standard Additions: Digits Required: 0.1 ml;______ 0.2ml;____ 0,3mi;___ Notes: Nitrite (NO₂ -N): Analysis Time: 113ϕ DR-890 Filtered: DR-700 Equipment: Program/Module: め.ダモー Reagent Blank Correction: Concentration: Standard Solution: Notes: Nitrate (NO₃-N): Analysis Time: Equipment: DR-700 Filtered: DR-8__ Other: Program/Module: Concentration: mg/L Nitrite Interference Treatment; Reagent Blank Correction: Standard Solution: Results: Standard Additions: Digits Required; 0.1ml;______ 0.2ml;_____ 0.3ml;___ Notes:

Tetra Tech NUS, Inc.

Page <u>3</u> of <u>3</u>

,
Project Site Name: 27 Sample ID No.: 246L MO141
Project No.: \$\Phi 126 \text{Sample Location: } 27 M\omega 1
Sampled By: JA/JE/JM/TT Duplicate:
Field Analyst: JA/JM Blank:
Field Form Checked as per QA/QC Checklist (initials):
SAMPLE COLLECTION/ANALYSIS INFORMATION:
Manganese (Mn ²⁺):
Equipment: DR-700 DR-89_O HACH MN-5 Other: Analysis Time:
Program/Module: 525nm 41
Concentration:
Digestion:
Standard Solution: Results: Reagent Blank Correction:
Standard Additions: Digits Required: 0.1ml: 0.2ml: 0.3ml:
Notes:
Ferrous Iron (Fe ²⁺):
Equipment: DR-700 DR-899 IR-18C Color Wheel Other: Analysis Time: 1946
Program/Module: 500nm 33
Concentration: $\phi \cdot \phi \cdot \beta$ rng/L Filtered:
Notes;
Hydrogen Sulfide (H₂S):
Equipment: HS-C Other: Analysis Time: 11069
Concentration: mg/L Exceeded 5.0 mg/L range on color chart:
Notes:
QA/QC Checklist:
All data fields have been completed as necessary:
Correct measurement units are cited in the SAMPLING DATA block:
Mulitplication is correct for each <i>Multiplier</i> table:
Final calulated concentration is within the appropriate Range Used block:
Alkalinity Relationship is determined appropriatly as per manufacturer instructions:
QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the project planning documents:
Nitrite Interference treatment used for Nitrate test if Nitrite was detected:
Title block is initialized by person who performed the QA/QC Ckecklist:

Tetra Tech NUS, Ir	10,	GEO	CHEIVIR	CAL PA	KAIVIE I	EKO		Page of	3
Project Site N	lame: (/	nc 2146	27	zont E		Sample ID No		L X0501	
Sampled By:		N: T & T	TM			Duplicate:			
· · · · · · · · · · · · · · · · · · ·		17 4 TV		•	_	•			
Field Analyst	hecked as per C			iale).	1/4	Blank:			
	Hecked as per C		•	_	<u> </u>	erianen jari era			
a	-23-99				2000,000				
	100	Color	ORP (Eh)		Temp.	Turbidity	DO	Sal.	pH
		(Visual)	(+/- mv)		(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
***************************************	V Flow	clean		0.610	25, 7	12	2.46		6.67
	TION/ANALYSIS II	NEORMATION	1.00 基本等		机和影響		的。这种主题的影響		采购起 原
Dissolved Ox Equipment:	ygen: HACH Digital Titrato	or OX-DT	CHEMetric	s (Range: _	1-12 mg/L)		Analysis Time:	1123	<u>-</u>
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Muttiplier	Concentration]
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	」
	2-10 mg/L	100 ml	0,200 N	0.02			x 0,02	= mg/L]
CHEMetrics: 3	. O mg/L								_
Notes:									
Alkalinity: Equipment:	HACH Digital Titrato	or AL-DT	CHEMetric	s (Range: _	mg/L))	Analysis Time: Filtered;	050	-
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration]
	10-40 mg/L	100 ml	0.1600 N	0.1		&	x 0.1	= mg/L	_ 1
<u> </u>	40-160 mg/L	25 ml	0.1600 N	0.4		&	x 0.4	= mg/L	<u> </u>
<u> </u>	100-400 mg/L	100 ml	1.600 N	1.0	. 0	<u>203</u>	x 1.0	= J03wa/r]]
	200-800 mg/L	50 ml	1.600 N	2.0		<u> </u>	x 2.0	= mg/L	_
	500-2000 mg/L	20 ml	1.600 N	5.0		&	x 5.0	= mg/L	╛
	1000-4000 mg/L	10 ml	1,600 N	10,0		&	x 10.0	= mg/L]
							_		
	Parameter:	Hydroxide	Cart	oonate		carbonate			
	Relationship:	0	(<u> </u>	2	03			
CHEMetrics:	mg/L								
Notes:									_
Standard Additions	s: Titrar	nt Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.:		
Carbon Dioxi	de:								
Equipment: (HACH Digital Titrat	or CA-DT	CHEMetric	cs (Range: _	mg/L)	Analysis Time;	1147	
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	_	Titration Count		Concentration	<u> </u>
	10-50 mg/L	200 ml	0.3636 N	0.1	_		x 0.1	= mg/L	_
	20-100 mg/L	100 mi	0.3636 N	0,2	1		x 0.2	≄ mg/L	
M	100-400 mg/L	200 ml	3.636 N	1.0]	303	x 1.0	= 203 mg/L	_} ,
	200-1000 mg/L	100 mi	3.636 N	2.0	_		x 2.0	= mg/L	
CHEMetrics:	mg/L								
Notes:									
Standard Addition	s: Titra	nt Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.:		

Tetra Tech NUS, Inc.

Page <u>2</u> of <u>3</u>

Drainet Site Name:	cila 27	Completo No. 2761 VIII
Project Site Name:	Sik 27	Sample ID No.: 279LX4541
Project No.:	Ø126	Sample Location: NBCE-045-449
Sampled By:	JA JE JUN IT	Duplicate:
	14/5M	Blank:
	per QA/QC Checklist (initial	
	SIS INFORMATION:	
Sulfide (S ²):		
Equipment: DR-700	DR-8 90 HS-C Color CI	hart HS-WR Color Wheel Analysis Time: (032
Program/Module: 610nm	93	Other:
	2	
Concentration: グ.ダ	<u>←</u> mg/L	Filtered:
Notes:		
Sulfate (SQ. ²):		
Equipment: DR-700	DR-8 Other:	Analysis Time:
Program/Module;	91	
Concentration:	mg/L	Filtered:
Standard Solution:	Results:	
Standard Additions:	Digits Required: 0.1ml;	0.2ml; 0.3ml:
Notes:		
Nitrite (NO ₂ -N):		Analysis Time: 1/3/
Equipment: DR-700	DR-810 Other:	Filtered:
Program/Module:	60	
Concentration: ϕ . ϕ 4	2_ mg/L	Reagent Blank Correction:
<u> </u>		Standard Solution: Results:
Notes:		
Nitrate (NO ₃ N):		Analysis Time:
Equipment: DR-700	DR-8 Other:	Filtered:
Program/Module:	55	
Concentration:	mg/L	
		Nitrite Interference Treatment:
Standard Satisfication	Danista.	
Standard Solution:	Results:	Reagent Blank Correction:
Standard Additions:	Digits Required: 0,1 ml:	0.2ml: 0,3ml:
Notes:		
<u> </u>		

GEOCHEMICAL PARAMETERS	7 7
Tetra Tech NUS, Inc.	Page $\overline{2}$ of $\overline{3}$
Project Site Name: Site 2.2 Sample ID No.: 27	16LX Ø5 Ø1
Project No.: 5/26 Sample Location:	* NBEG 065
Sampled By: JA JM JE CT Duplicate:	
Field Analyst: SA/Jm Blank:	
Field Form Checked as per QA/QC Checklist (initials):	
SAMPLE COLLECTION/ANALYSIS INFORMATION:	THE PERSON OF TH
Manganese (Mn ²⁺):	
Equipment: DR-700 DR-8 9 HACH MN-5 Other: Analysis 1	Time:
Program/Module: 525nm 41	
Concentration: \$\psi .5 \text{mg/L} \text{Filtere}	a □
Digestic	~ _
Standard Solution: Results: Reagent Blank Corre	
Standard Additions: Digits Required: 0.1ml: 0.2ml: 0.3ml:	2001, 23
Notes:	
F	
Ferrous Iron (Fe ²⁺):	1 4 4/7
	Time: 1447
Program/Module: 500nm 33	
Concentration: 3.3 \(\psi \) mg/L Filtere	d: LJ
Notes: CMIT	
Hydrogen Sulfide (H₂S):	
Equipment: (IS-C) Other: Analysis	Time: _///5
Concentration: mg/L Exceeded 5.0 mg/L range on color chart:	
Notes:	
· · · · · · · · · · · · · · · · · · ·	
QA/QC Checklist:	
All data fields have been completed as necessary:	
Correct measurement units are cited in the SAMPLING DATA block:	
Mulitplication is correct for each Multiplier table:	
Final calulated concentration is within the appropriate Range Used block:	
Alkalinity Relationship is determined appropriatly as per manufacturer instructions:	
	onts:
QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the project planning docum	ieints.
Nitrite Interference treatment used for Nitrate test if Nitrite was detected:	
Title block is initialized by person who performed the QA/QC Ckecklist:	

Tetra Tech NUS, Inc.

Page <u>1</u> of <u>3</u>

 Project Site	Name: Zon	e E 511	127			Sample ID No	D.: 276	LX0701	
Project No.:	N0126					Sample Local		WX07	
Sampled By:		+ JJ1	<u>~</u>			Duplicate:			
Field Analyst		TIM				Blank:	H		
	hecked as per (iale).	1 ()				1
	CHESCHE AS PER C			<u> </u>					
	- 23 - 99	Color		S.C.	1				1
		i	ORP (Eh)		Temp.	Turbidity	DO	Sal.	pH
Time:	ων ε βου 113 β	(Visual)	(+/- mv)	(mS/cm)	28.2	(NTU)	(Meter, mg/l)	(%)	(SU)
	CTION/ANALYSIS I	CIRAL			0.4		1.53		6.93
Dissolved Ox	7-20-5-37-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	ALOKINA I JO							
Equipment:	HACH Digital Titrato	or OX-DT	CHEMetric	s (Range: _	0~ 1 mg/L)		Analysis Time;	1113	-
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	1	Titration Count	Multiplier	Concentration	1 1
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	1
	2-10 mg/L	100 ml	0.200 N	0.02	1		x 0.02	= mg/L	† !
CHEMetrics:).	•						-		
Notes:					-				-
Alkalinity:							Analysis Time:	1045	
Equipment:	HACH Digital Titrato	or AL-DT	CHEMetric	s (Range; _	mg/L))	Filtered:		
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration	7
	10-40 mg/L	100 ml	0.1600 N	0.1		8	x 0.1	= mg/L] !
	40-160 mg/L	25 ml	0.1600 N	0.4		&	x 0.4	= mg/L	1
₹ ▼	100-400 mg/L	100 ml	1.600 N	1.0	0	* <u>343</u>	x 1.0	= 343mg/L]
	200-800 mg/L	50 mi	1,600 N	2.0		&	x 2.0	⊭ mg/L	
	500-2000 mg/L	20 ml	1.600 N	5.0		&	x 5.0	= mg/L	
	1000-4000 mg/L	10 ml	1.600 N	10.0		&	x 10.0	= mg/L	
						•			_
	Parameter:	Hydroxide	Carb	onate	Bio	carbonate			
	Relationship:	0		,		3 43	1		
CHEMetrics:	mg/L		-				_		
Notes:									_
Standard Additions	s: Titran	t Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.:		
Carbon Dioxi	de:							. • • •	
Equipment:	HACH Digital Titrate	or CA-DT	CHEMetric	s (Range: _	mg/L)	Analysis Time	: 1146	_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	7	Titration Count		Concentration	
	10-50 mg/L	200 mi	0.3636 N	0.1]		x 0.1	= mg/L	
	20-100 mg/L	100 ml	0.3636 N	0.2	1		x 0.2	= mg/L	_
	100-400 mg/L	200 mj	3,636 N	1.0	1		x 1.0	= mg/L	7
V	200-1000 mg/L	100 ml	3.636 N	2.0	1	115	x 2.0	= 230 mg/L	
CHEMetrics:	mg/L				_				_
Notes:	_ _								
Standard Addition	s: Titran	t Molarity:		Digits Rec	uired: 1st.:_	2nd.:	3rd.:		

Page 2 of 3Tetra Tech NUS, Inc. Sample ID No.: 279L x07401 Project Site Name: Sample Location: NB (E-065-047 Project No.: Sampled By: Duplicate: Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials); SAMPLE COLLECTION/ANALYSIS INFORMATION: Sulfide (S27: Analysis Time: 1636 DR-8 9 2 DR-700 Equipment: **HS-C Color Chart HS-WR Color Wheel** Program/Module: 610nm 93 Other: Ø. Ø2 Concentration: Filtered: Notes: Sulfate (S0₄2): Equipment: DR-8 ___ Other: Analysis Time: Program/Module: 91 Concentration: mg/L Filtered: Standard Solution: Results: Standard Additions: Digits Required: 0.1ml;______ 0.2ml;_____ 0.3ml;_____ Notes: Nitrite (NO₂-N): Analysis Time: 1129 DR-890 DR-700 Filtered: Equipment; Other: Program/Module: 60 **444** Reagent Blank Correction: Concentration: mg/L Standard Solution: Results: Notes: Nitrate (NO₃-N): Analysis Time: Filtered: Equipment: BR-700 DR-8__ Other: Program/Module: Concentration: mg/L Nitrite Interference Treatment: Reagent Blank Correction: Standard Solution: Results: Standard Additions: Digits Required: 0.1ml: 0.2ml: 0.3ml: Notes:

Tetra Tech NUS, Inc.

Page <u>3 of 3</u>

	226L X8701
	Sample ID No.: 2764 X47-01
Project No.: 0126	Sample Location: NBLF - Ø65- Ø67
Sampled By: JA/JE/JM/TT	Duplicate:
Field Analyst: TA/JM	Blank:
Field Form Checked as per QA/QC Checklist (initials):	
SAMPLE COLLECTION/ANALYSIS INFORMATION:	
Manganese (Mn ²⁺):	
Equipment: DR-700 DR-8 4.2 HACH MN-5 Other:	Analysis Time:
Program/Module: 525nm 41	<u>_</u>
Concentration: Ø. ♥ mg/L	Filtered:
	Digestion:
Standard Solution: Results:	Reagent Blank Correction:
Standard Additions: Digits Required: 0.1ml: 0.2ml:	0.3ml;
Notes:	
Ferrous Iron (Fe ²⁺):	
Equipment: DR-700 DR-8 90 IR-18C Color Wheel Other:	Analysis Time: _/ø45
Program/Module: 500nm 33	
Concentration: 1.70 mg/L	Filtered:
Notes:	
Hydrogen Sulfide (H₂S):	
Equipment: HS-C Other:	Analysis Time: 1028
Concentration: Concentration: Exceeded 5.0 mg/L range on color of	chart;
Notes:	
QA/QC Checklist:	
All data fields have been completed as necessary:	1
Correct measurement units are cited in the SAMPLING DATA block:	Y
Mulitplication is correct for each <i>Multiplier</i> table:)
Final calulated concentration is within the appropriate Range Used block:	d ,
Alkalinity Relationship is determined appropriatly as per manufacturer instru	ections:
QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the	
Nitrite Interference treatment used for Nitrate test if Nitrite was detected:	id,
Title block is initialized by person who performed the QA/QC Ckecklist:	オ
THE PROOF IS BUILDING BY POLOSIT STILL PERSONNER HIE STAGE CHECKIST.	

APPENDIX D

SOIL AND GROUNDWATER LABORATORY ANALYTICAL DATA

RR 3. Box 7230, Ching Rood, Window, ME (4901 TEL (207) 875-4283 FAX (207) 873-49/7

Sk Liberty Drive, Bongor, ME 04401 TEL (207) 848-5714 FAX (207) 848-2403
Gray Plaza, P. O. Box 378, Gray, ME 04039 TEL (207) 657-2866 FAX (207) 657-2840
91 Water St., P. O. Box 220, Caribou, ME 04736 TEL (207) 496-1511 FAX (207) 496-1601
SS Londonderry Rd., 46, Londonderry, NH 03053 TEL (603) 437-9600 FAX (603) 437-9655.

LAB REPORT

October 21, 1999 99-812 M

Katahdin Analytical Services ATTN: Andrea Colby P.O. Box 720 Westbrook, Maine 04092

Reference:

Laboratory Testing

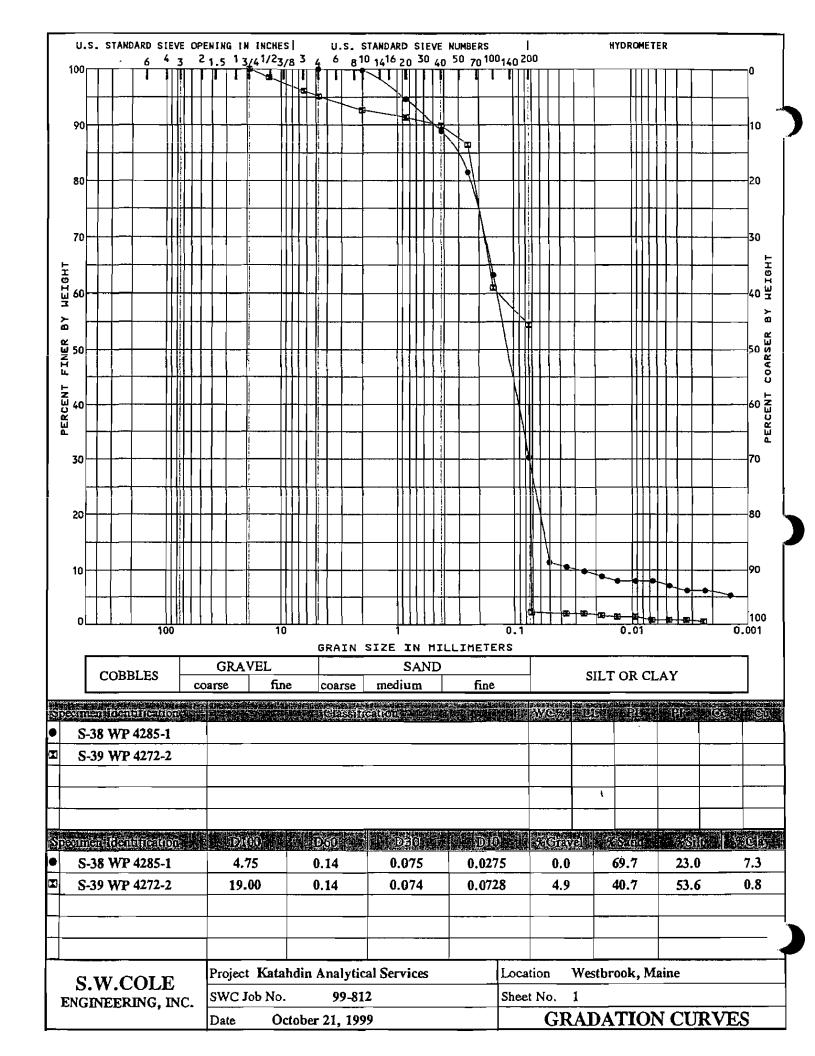
SWC		Date	Date
Sample No.	Material Source	Received	Tested
S-38	WP 4285-1	10-14-99	10-20-99
S-39	¥WP 4272-2 (2754B0701)	10-14-99	10-20-99

(WP 4272-2 is the "Lab Number" on Katahdin's analytical report for sample 275480701)

TEST RESULTS

Grain Size Analysis (Hydrometer)

Compared to the property of


The samples were tested in accordance with ASTM D-422, "Particle Size Analysis of Soils". After soaking for at least 16 hours, allring apparatus A (a blender) was used to stir the samples for one minute.

	Percent of Majerial						
Sample <u>Number</u> S-38	Gravel, 3" to No. 4 0.0	Sand No. 4 to No. 200 69.7	Sitt 0.074 to <u>0.005mm</u> 23.0	Clay Smaller Than 0.005 mm 7.3			
275LBO701) S-39	4.9	40.7	53.6	0.8			

Robert E. Chaput, Jr. P.E. Geotechnical Engineer

REC:rac ... '
Checked By: . . :

P::SWC-9999-812-99-812-ft doc

NOV 12 '99 03: 32PM TETRA TECH NUS/TALLAHASSEE, FL REPORT OF ANALYTICAL RESULTS

Çilent:

Paul Calligan

Yetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4272-2

SDG:

WP4272

Report Date:

11/3/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

90

Method:

SW8260 Date Analyzed: 10/14/99

Sample Description .	Matrix 3	empled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27SLB0701	SL	10/12/99	10/13/99	10/14/99	KMC	5030	KWC
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
BENZENE	વ	ug/Kg	0.88	4	5		
TOLUENE .	. 4	ug/Kg	85,0	4	5		
1,2-DIBROMOETHANE	4	ug/Kg	0.66	4	5		
ETHYLBENZENE .	<4	ug/Kg	0.88	. 4	5		
NAPHTHALENE	<4	ug/Kg	0.88	4	5		
MTBE ·	₹4	ug/Kg	0.56	4	5		
YOTAL XYLENES	-4	ug/Kg	0.88	4	5		•
DIBROMOFLUOROMETHANE	118	%	0.58				-
1,2-DICHLOROETHANE-D4	118	%	0.88				
TOLUENĖ-08	107	*	0.88				
P-BROMOFLUOROBENZENE	86	%	0.88				

Report Notes:

NOV 12 '99 03: 32PM TETRA TECH NUS/TALLAHASSEE, FL REPORT OF ANALYTICAL RESULTS

Cflent:

Paul Celligan.

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Teliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4272-2

SDG:

WP4272

Report Date:

11/2/99 N7912-P99264

PO No. : Projects

CTO #68

% Solids:

90

Method: Date Analyzed: 10/18/99

EPA 8270

Sample Description	Matrix	Sampled Date	Rec'd Data	Ext. Date	Ext'd By	Ext. Method	Analyst
27SLB0701	SL	10/12/99	10/1.3/89	10/15/99	LAP	EPA 3550	KRT
Compound	R	esult Unit	b DF	Sample POL	Method PQL		
NAPHTHALENE		360 ug/Kg	1.1	360	330		"
2-METHYLNAPHTHALENE	<	360 `ug/Kg	1.1	350	330	٠ .	
ACENAPHTHYLENE	<	360 ug/Kg	1.1	360	330	•	
ACENAPHTHENE	<	360 ug/Kg	1.1	360	330		
FLUORENE	<	360 ug/Kg	1.1	360	330		
PHENANTHRENE	<	360 ug/Kg	1.1	360	330		
ANTHRACENE	<	360 ug/Kg	1,1	360	330		
FLUORANTHENE	<	360 ug/Kg	1.1	360	330		
PYRENE	<	360 ug/Kg	1.1	360	330		
BENZOJAJANTHRACENE	<	360 ug/Kg	1.1	360	330		
CHRYSENE	<	360 vg/Kg	. 1.1	360	330		
BENZOJBJFLUORANTHENE	~	360 ug/Kg	7.1	380	330		
BENZONFLUORANTHENE	. <	360 ug/Kg	1.1	360	330		
BENZOJAJPYRENE	<	360 ug/Kg	1.1	360	330		
INDENO(1,2,3-CD)PYRENE	~	360 ug/K g	· 1.1	360	330		
DIBENZIAHIANTHRACENE	<	360 ∪g/Kg	1.1	360	330		
BENZO(G,H,I)PERYLENE	<	360 ug/Kg	1,1	360	330		
NITROBENZENE-D5		30 %	1 .1				
2-FLUOROBIPHENYL		53 %	1.1				
TERPHENYL-D14	•	67 %	1.1				

Report Notes:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 27\$LB0701

Matrix: SOIL

SDG Name: WP4272

Percent Solids: 89.6

Lab Sample ID: WP4272-002

Conceptration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C	Q	M	DF	
7429-90-5	ALUMINUM	. 5000			P	1	l
7440-36-0	ANTIMONY	0.81			P	1	,
7440-38-2	ARSENIC	2.8			P	I	ı
7440-39-3	BARIUM	24.2			P	1	
7440-41-7	BERYLLIUM	0.22	B		P	1	•
7440-43-9	CADMIUM	0.98			P	1	
7440-70-2	CALCIUM	16300			P	1	
7440-47-3	CHROMIUM	32.2			P	1	
7440-48-4	COBALT	3.5			P	. 1	
7440-50-8	COPPER	103			P	1	
7439-89-6	IRON	5120			P	1	
7439-92-1	LEAD	109			P	1	
7439-95-4°	MAGNESIUM	658			P	1	
<i>74</i> 39-96-5	MANGANESE	47.2			P	1	
7439-97-6	MERCURY	0.08			CV	1	
7440-02-0	NICKEL.	15.3			P	1	,
7440-09-7	POTASSIUM	255			P	1	į.
7782-49-2	SELENIUM	0.24	U		P	1	
7440-22-4	SILVER	0.18	В		P	1	Į
7440-23-5	SODIUM	92.0			P	1	
7440-28-0	THALLIUM	0.42	U		· P	1	
7440-62-2	VANADIUM	8.8			P	1	L
7440-66-6	ZINC	376			P	1	į

Comments:

Clicat:

Katahdio Analytical 340 County Reed

Westbrook, Maine 04092

Contact

Ms. Andrea Colby

Project Description:

Former Neval Complex

cc: KATA00199

Report Date: November 03, 1999

Page 1 of 2

Sample ID		: 2791.B0701
Lab H)		: 9910461-02
Matrix		; Soil
Date Collected		: 10/12/99
Date Received	_	: 10/13/99
Priority		: Routine
Collector		: Client

Parameter	Qualifier	Result	DI.	RL	Units	DF	Anal	yst Date	Time	Batch	M
General Chemistr	y	•									
Total Rac. Petro. I	Eydrocarbons	353	114	228	mg/kg	1.0	AAT	10/15/99	1030	160780	ı ı
Evaporative Loss	€ 105 €	12.Ó	1.00	1.00	wt%	1.0	GI	10/15/99	1600	160831	. 2
Total Organic Cu	bon	1 750	43.1	100	mg/kg	1.0	JB1	11/03/99	1221	161989	3

M = Method	Method-Description
M 1	SW846 9071A
M2	EPA 3550
М3	SW846 9060 Modified

Notes:

The qualifiers in this toport are defined as follows:

ND indicates that the analyse was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a conventuation greater than the detection limit

Data reported in massimass units is reported as 'dry weight'.

^{*} indicates that a quality countral analyte recovery is outside of specified acceptance criteria.

CLIENT: Paul Calligan

Tetra Tech NOS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-4272-2

Report Date: 11/10/99

PO No. : N7912-P99264 Project : CTO #68

WICH: ONC CHARLESTON

REPORT OF AMALYTICAL RESULTS

Page 2 of 2

SAMPLE DESCRIPTION		MATRIX		ÊME	TED. HA	SAMPLED I	PATE	RECEIVED
27SLB0701		Solid		P.CA	TTGAM ·	10/12/9	9	10/13/99
PARAMETER	RESULT	UNITS	, df	*PQL	WEITHOD	ANALYZED	BY	NC DES
Solida-Total Residue (TS) Total Combustible Organics	90.	wt t	1.0			W 10/21/99 -8 10/21/99	JIF JIF	_

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 10/20/99 by JF

11/10/99

LJO/baeajc (dw) /mem

CC: MS LEE LECK
TETRA TECH MUS
FOSTER FLAZA 7
661 ANDERSEN DR.

340 County Road No. 5 P.O. Box 720, Westbrook, ME 94096 Tel: (207) 874-2400 Fac (207) 775-4029

herp://kasahdinlah.com

210 West Read No. 5, Persymbolis, NH 03801 Tel: (603) 431-5777 Fax: (603) 436-3356 CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-4272-1

Report Date: 11/01/99

PO No. : N

: N7912-P99264

Project : CTO #68

PRELIMINARY

WICH: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 4

SAMPLE DESCRIPTION		MATRIX		SAMPL	ed ba	SAMPLED D	ATE	RECEIVED
30SLB170708		Solid		P,CAL	LIGAN	10/12/9	9	10/13/99
PARAMETER	RESULT	UNITE	DF	*PQL	METHOD	ANAI.YZED	BA	NOTES
Solids-Total Residue (TS)	92,	wt &	1.0	0.10	CLP/CIP	SOW 10/18/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 10/15/99 by JF

11/01/99

LJO/_ajc(dw)/man

CC: MS LEE LECK TEURA TECH NUS FOSTER PLAZA 7 661 ANDERSEN UR.

WP4272

Katahdin

CHAIN OF CUSTODY RECORD

Page / of /

Client Name/Facility N	ame,	. 1			T^{L}	<u> </u>	SAM	PLE .	ĄNĄL	YSIS	REQU	IRED	(х) - ш	e tema	ks arca	to spec	ify spe	rific con	npound	s (or me	thods		U	se For Pin the	boxes to in	dicate whether		
Tetra Tech NL	is/charl	eston No	wa	ĮΒ¢		-	1 1	1 1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u>11.</u>		<u> </u>	<u> </u>		Ц.	┸┸╌	 	3	*	sample was fi	lered and/o	r preserved		
Collected by/Company					一貫	Ę.	ķ		춫	٠,	<u>ت</u> حر	f				<u>\$</u>	<u>₹</u>			specify		Size						
P. Calligan/T	etra Te	ich			Ę	ğ	9		Ě	Ē	1 5 E	R		۱.	TO CO		1]										
1 1 1 1 1 1 1		7	13	T _P .	<u> </u>	, E	🖁	l.,	출유	3	SP	3	ge	Ş.	₹		į	مرا	ide	Ę	₹.	נָל י						
Client Name/Facility N Tetra Tech NL Collected by/Company P. Calligan T SAMPLE ID	DATE	TIME	WEL	SS	ERA P	PH,	TOCHOC FOC	ŢŎ.	Chloride, Phoetide, Suiffide	REFE	VOC - Specify Method required	MET	Pest	Herb	Total Phenol	γdd	B/N Extractables	PCB's	Cynn	S &	PAHS	Grain			marl			
305LB170708	10.12.99	1500	2	4	5						X										X		4En	cores oz Jar cares (8 c(8270)	(87) (8)	50) 270)		
275LB0701	10.12.99	1700	;	4	7		X				X	X									X	×	4 EM	ures (8 c(8270)	260) , 1-3	1-202.(202.(G	meto rain	ls) Eize
				П	1																							
,			Ħ	††	1-	 			<u> </u>											-							- 1,=	
			$\dagger \dagger$	+	-	-		-												[-	
			╁	$\dagger \dagger$	+-	 -		-					-		<u></u>		_					-						
			╁┼	+		┼-	<u> </u>	 	-	_							_	_		<u> </u>						.		
	4)***		\dashv	\dashv	 	-	ļ		_	_	<u> </u>						_		_	_	ļ <u>-</u>							ļ
		ļ		11	<u> </u>	<u> </u>					ļ					_	-			 	-	_						
.=-	,			\coprod						_							<u> </u>											
			П																,									
			$\dagger \dagger$	$\dagger \dagger$		<u> </u>																						
Relinquished by:		Date:	Tin)e:	Reco	elved i	y: F	ed.	Ex	Ai	1,7	1#	Reli	L	ed by:		<u> </u>	L	L		Date	<u> </u>	Time:	Received	y:			
Relinquished by: Paul E. Colf	<u></u>	10.12.99		:10	9 81	147	55	74	-3	85	6						-				10-1:	3.99	0845	Show	angli	D.		
Relinquished by:		Date:	Tim	e:	Reco	elved l	y lab	by:					Date	:	Time	e:	Kent	arks:							Û			

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-15

SDG:

WP4075

Report Date:

10/15/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/28/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLM0101	AQ	9/23/99	9/25/99	9/28/99	HMP	5030	HMP
Compound	Res	uit Units	DF	Sample PQL	Method PQL		***
BENZENE	<	5 ug/L	1.0	5	5		
TOLUENE	<	5 ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<	5 ug/L	1.0	5	5		
ETHYLBENZENE	</td <td>5 ug/L</td> <td>1.0</td> <td>5</td> <td>5</td> <td></td> <td></td>	5 ug/L	1.0	5	5		
NAPHTHALENE	</td <td>5 ug/L</td> <td>1.0</td> <td>5</td> <td>5</td> <td></td> <td></td>	5 ug/L	1.0	5	5		
MTBE	</td <td>5 ug/L</td> <td>1.0</td> <td>5</td> <td>5</td> <td></td> <td></td>	5 ug/L	1.0	5	5		
TOTAL XYLENES	<	5 ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	10		1.0				
1,2-DICHLOROETHANE-D4	10	3 %	1.0				
TOLUENE-D8	10	2 %	1.0				
P-BROMOFLUOROBENZENE	10	0 %	1.0				

Report Notes:

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

lient:

Paul Calligan Tetra Tech NUS 1401 Öven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-7

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68 N/A

% Solids: Method:

EPA 8270

Date Analyzed: 10/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLM0101	AQ	9/23/99	9/24/99	9/28/99	DS	SW3510	KRT
Compound	Re	sult Units	DF	Sample PQ <u>L</u>	Method PQL		
NAPHTHALENE	<	11 ug/L	· 1.1	11	10		
2-METHYLNAPHTHALENE	<	11 ug/L	1.1	11	10		
ACENAPHTHYLENE	<	11 ug/L	1.1	11	10		
ACENAPHTHENE	<	11 ug/L	1.1	11	10		
FLUORENE	<	11 ug/L	1.1	11	10		
PHENANTHRENE	<	11 ug/L	1.1	11	10		
ANTHRACENE	<	11 ug/L	1.1	11	10		
FLUORANTHENE	<	11 ug/L	1.1	11	10		
"YRENE	<	11 ug/L	1.1	11	10		
ENZO[A]ANTHRACENE	<	11 ug/L	1.1	11	10		
CHRYSENE	<	11 ug/L	1.1	11.	10		
BENZO[B]FLUORANTHENE	<	11 ug/L	1.1	11	10		
BENZO[K]FLUORANTHENE	<	11 ug/L	1.1	11	10		
BENZO[A]PYRENE	<	11 ug/L	1.1	11	10		
INDENO[1,2,3-CD]PYRENE	<	11 ug/L	1.1	11	10		
DIBENZ[A,H]ANTHRACENE	<	11 ug/L	1.1	11	10		
BENZO[G,H,I]PERYLENE	<	11 ug/L	1.1	11	10		
NITROBENZENE-D5	7	79 %	1.1				
2-FLUOROBIPHENYL	8	32 %	1.1				
TERPHENYL-D14	ŧ	38 %	1.1				

Report Notes:

A-1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 27GLM0101

Matrix: WATER

SDG Name: WP4075

Percent Solids: 0.00

Lab Sample ID: WP4075-015

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	1190			P	1
7440-36-0	ANTIMONY	7.3	В		P	1
7440-38-2	ARSENIC	12.6			P	1
7440-39-3	BARIUM	55.1			P	1
7440-41-7	BERYLLIUM	0.33	U		P	1
7440-43-9	CADMIUM	2.1	В		P	1
7440-70-2	CALCIUM	58200			P	1
7440-47-3	CHROMIUM	11.4	В		P	1
7440-48-4	COBALT	7.1	В		P	1
7440-50-8	COPPER	141			P	1
7439-89-6	IRON	5340			P	1
7439-92-1	LEAD	42.5			P	1
7439-95-4	MAGNESIUM	1730			P	1
7439-96-5	MANGANESE	118			P	1
7439-97-6	MERCURY	0.09	В		CV	1
7440-02-0	NICKEL	13.21	U		P	1
7440-09-7	POTASSIUM	2420			P	1
7782-49-2	SELENIUM	2.57	U		P	1
7440-22-4	SILVER	2.54	U		P	1
7440-23-5	SODIUM	7630			P	I
7440-28-0	THALLIUM	4.49	U		P	1
7440-62-2	VANADIUM	3.7	В		P	1
7440-66-6	ZINC	173			P	1

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-4075-7 Report Date: 10/27/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 2 of 21

SAMPLE DESCRIPTION	EAM	RIX		SAMPLED 1	BY	SAMPLED D	ATE	RECEIVED
27GLM0101	Aqueous			CLIENT	09/23/9	09/24/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	<0.050 16.	mg/L mg/L	1.0		353.2 375.4	09/24/99 10/12/99	KW KW	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/27/99

LJO/baeajc(dw)/msm PI24NOW2

CC: MS. LEE LECK
TETRATECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

ORGANICS ANALYSIS DATA SHEET 27GLMO101 EPA SAMPLE NO.

Lab Name: ENSR	Contract:	WP4075-15(B)
Lab Code:	Case No.:	SAS NO.: SDG NO.:
Matrix: (soil/water)	_ water	Lab Sample ID: 990181-1
Sample wt / vol: 32	.5 ml (g/ml)	Lab File ID:KTH_013
Level: (low/med)	low	Date Received:9/28/99
% Moisture: NA		Date Analyzed:10/5/99
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor:1
Soil Extract Volume:	ΝΑ (μΙ)	Soil Aliquot Volume:NA (μΙ)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L Q
74-82-8	Methane	40

27 GLM0101

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

lient: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

MTBE

TOTAL XYLENES

OLUENE-D8

DIBROMOFLUOROMETHANE

2-DICHLOROETHANE-D4

P-BROMOFLUOROBENZENE

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-20

SDG:

WP4075

Report Date:

10/15/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

5

5

SW8260 Date Analyzed: 9/28/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
27GLM0101D	AQ	9/23/99	9/25/99	9/28/99	HMP	5030	НМР	
Compound	Res	sult Units	DF	Sample PQL	Method PQL			
BENZENE	</td <td>5 ug/L,</td> <td>1.0</td> <td>5</td> <td>5</td> <td></td> <td></td> <td></td>	5 u g/L ,	1.0	5	5			
TOLUENE	<	5 ug/L	1.0	5	5			
1,2-DIBROMOETHANE	<	5 ug/L	1.0	5	5			
ETHYLBENZENE	<	5 ug/L	1,0	5	5			
NAPHTHALENE	<	5 ua/L	1.0	5	5			

1.0

1.0

1.0

1.0

1.0

1.0

<5

<5

104

107

102

101

ug/L

ug/L

%

%

%

%

5

5

Report Notes:

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-5

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/5/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLM0101D	ΑQ	9/23/99	9/24/99	9/28/99	DS	SW3510	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<11	ug/L	1.1	11	10	•	
2-METHYLNAPHTHALENE	<11	ug/L	1.1	11	10		
ACENAPHTHYLENE	<11	ug/ <u>L</u>	1.1	11	10		
ACENAPHTHENE	<11	ug/L	1.1	11	10		
FLUORENE	<11	ug/L	1.1	11	10		
PHENANTHRENE	<11	ug/L	1.1	11	10		
ANTHRACENE	<11	ug/L	1.1	11	10		
FLUORANTHENE	<11	ug/L	1.1	11	10		
PYRENE	<11	ug/ <u>L</u>	1.1	11	10		
BENZO[A]ANTHRACENE	<11	ug/L	1.1	11	10		
CHRYSENE	<11	ug/L	1,1	11	10		
BENZO[8]FLUORANTHENÉ	<11	ug/L	1.1	11	. 10		
BENZOĮKJFLUORANTHENE	<11	ug/L	1.1	11	10		
BENZO[A]PYRENE	<11	ug/L	1,1	11	10		
INDENO[1,2,3-CD]PYRENE	<11	ug/L	1.1	11	10		
DIBENZ[A,H]ANTHRACENE	<11	ug/L	1.1	11	10		
BENZO[G,H,I]PERYLENE	<11	ug/L	1.1	11	10		
NITROBENZENE-D5	76	%	1.1				
2-FLUOROBIPHENYL	80	%	1.1				
TERPHENYL-D14	90	%	1.1				

Report Notes: A-1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 27GLM0101D

Matrix: WATER

SDG Name: WP4075

Percent Solids: 0.00

Lab Sample ID: WP4075-005

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	542			P	1
7440-36-0	ANTIMONY	5.0	В		P	1
7440-38-2	ARSENIC	8.4			P	1
7440-39-3	BARIUM	47.0			P	1
7440-41-7	BERYLLIUM	0.33	U		P	1
7440-43-9	CADMIUM	1.94	U		P	1
7440-70-2	CALCIUM	56500			P	ĺ
7440-47-3	CHROMIUM	4.6	В		P	1
7440-48-4	COBALT	4.9	В		P	1
7440-50-8	COPPER	78.7			P	1
7439-89-6	IRON	2840			P	1
7439-92-1	LEAD	17.5			P	1
7439 - 95-4	MAGNESIUM	1530			P	1
7439-96-5	MANGANESE	110			P	1
7439-97-6	MERCURY	0.04	В		CV	1
7440-02-0	NICKEL	13.21	U		P	1
7440-09-7	POTASSIUM	2270			P	1
7782-49-2	SELENIUM	2.57	U		P	1
7440-22-4	SILVER	2,54	U		P	1
7440-23-5	SODIUM	6560			P	1
7440-28-0	THALLIUM	8.6	В		P	1
7440-62-2	VANADIUM	3.58	U		P	1
7440-66-6	ZINC	99.2			P	1

Comments:

ORGANICS ANALYSIS DATA SHEET Z7GLMO(0)

EPA SAMPLE NO.

Lab Name: ENSR	Contract:		WP4075-15(E	B) RE
Lab Code:	Case No.:	SAS NO.:	SDG NO.:	
Matrix: (soil/water)	water	Lab Sample ID:	990181-1 DUP	
Sample wt / vol: 32.5	5 ml (g/ml)	Lab File ID:	_KTH_014	
Level: (low/med)	_low	Date Received:	9/28/99	
% Moisture: NA		Date Analyzed:	10/5/99	
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor;	11	
Soil Extract Volume:	NA (µl)	Soil Aliquot Vol	ume: NA	(µI)
CAS NO.	COMPOUND	CONCENTRAT (µg/L or PPMv)	•	Q
74-82-8	Methane	39		

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Paul Calligan Tetra Tech NUS 1401 Oven Park Dr. Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-17

SDG:

WP4075

Report Date:

10/15/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

9/28/99 Date Analyzed:

Sample Description	Matrix	Samj	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX0301	ΑQ	9,	/23/99	9/25/99	9/28/99	НМР	5030	нмР
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1,0	5	5		
1,2-DIBROMOETHANE		<5	цg/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		17	ug/L	1,0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		105	%	1.0				
-DICHLOROETHANE-D4		105	%	1.0				
LUENE-D8		102	%	1.0				
P-BROMOFLUOROBENZENE		101	%	1,0				

Report Notes:

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client: Paul Calilgan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number;

WP4075-1

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

WA

Date Analyzed: 10/4/99

EPA 8270

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX0301	AQ	9/23/99	9/24/99	9/28/99	Ds	SW3510	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	1 ug/L	1.1	11	10		
2-METHYLNAPHTHALENE	<1	1 ug/L	1.1	11	10		
ACENAPHTHYLENE	<1	1 ug/L	1.1	11	10		
ACENAPHTHENE	<1	1 ug/L	1.1	11	10		
FLUORENE	<1	1 ug/L	1.1	11	10		
PHENANTHRENE	<1	1 ug/L	1.1	11	10		
ANTHRACENE	<1	1 ug/L	1.1	11	10		
FLUORANTHENE	<1	1 ug/L	1.1	11	10		
PYRENE	<1	1 ug/L	1.1	11	10		
BENZO[AJANTHRACENE	<1	1 ug/L	1.1	11	10		
CHRYSENE	<1	1 ug/L	1.1	11	10		
BENZO[B]FLUORANTHENE	<1	1 ug/L	1.1	11	10		
BENZO[K]FLUORANTHENE	<1	1 ug/L	1.1	11	10		
BENZO[A]PYRENE	<1	1 ug/L	1.1	11	10		
INDENO[1,2,3-CD]PYRENE	<1	i1 ug/L	1.1	11	10		
DIBENZ[A,H]ANTHRACENE	<1	1 ug/L	1.1	11	10		
BENZO[G,H,I]PERYLENE	<1	1 ug/L	1.1	11	10		
NITROBENZENE-D5	8	3 %	1.1				
2-FLUOROBIPHENYL	8	5 %	1.1				
TERPHENYL-D14	9	2%	1.1				

Report Notes: A

۱-1

Lab Name: Katahdin Analytical Services

Client Field ID: 27GLX0301

Matrix: WATER

SDG Name: WP4075

Percent Solids: 0.00

Lab Sample ID: WP4075-017

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	4560			P	1
7440-36-0	ANTIMONY	73.9			P	1
7440-38-2	ARSENIC	9.4			P	1
7440-39-3	BARIUM	19.9			P	1
7440-41-7	BERYLLIUM	0.33	U		P	1
7440-43-9	CADMIUM	1.94	U		P	1
7440-70-2	CALCIUM	16600			P	1
7440-47-3	CHROMIUM	133			P	1
7440-48-4	COBALT	4.45	U		P	1
7440-50-8	COPPER	185			P	1
7439-89-6	IRON	1940			P	1
7439-92-1	LEAD	675			P	1
7439-95-4	MAGNESIUM	548			P	1
7439-96-5	MANGANESE	28.1			P	1
7439-97-6	MERCURY	0.34			CV	1
7440-02-0	NICKEL	16.5	В		P	1
7440-09-7	POTASSIUM	10300			P	1
7782-49-2	SELENIUM	2.57	U		P	1
7440-22-4	SILVER	2.54	U		P	1
7440-23-5	SODIUM	146000			P	1
7440-28-0	THALLIUM	4.49	U		P	1
7440-62-2	VANADIUM	41.0			P	1
7440-66-6	ZINC	582			P	1

Comments:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-18

SDG:

WP4075

Report Date:

10/15/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

N/A

Method:

SW8260 Date Analyzed: 9/28/99

Sample Description	mple Description Matrix Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
27GLX0401	AQ 9/23/99		9/25/99	9/28/99	НМР	5030	НМР	
Compound	Re	sult Units	DF	Sample PQL	Method PQL			
BENZENE	<	:5 ug/L	1,0	5	5			
TOLUENE	<	:5 ug/L	1.0	5	5			
1,2-DIBROMOETHANE	<	:5 ug/L	1,0	5	5			
ETHYLBENZENE	<	<5 ug/L	1.0	5	5			
NAPHTHALENE	•	7 ug/L	1.0	5	5			
MTBE	<	<5 ug/L	1.0	5	5			
TOTAL XYLENES	<	:5 ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	16	06 %	1.0					
1,2-DICHLOROETHANE-D4	16	06 %	1.0					
TOLUENE-D8	10	02 %	1.0					
P-BROMOFLUOROBENZENE	10	00 %	1.0					

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-2

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/5/99

Sample Description	Matrix Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext, Method	Analyst
27GLX0401	AQ	9/23/99	9/24/99	9/28/99	DS	SW3510	KRT
Compound	Result	Units	ÐF	Sample PQL	Method PQL		
NAPHTHALENE	J6	ug/L	· 1.1	11	10		
2-METHYLNAPHTHALENE	<11	ug/L	1,1	11	10		
ACENAPHTHYLENE	<11	ug/L	1.1	11	10		
ACENAPHTHENE	<11	ug/L	1.1	11	10		
FLUORENE	<11	ug/L	1.1	11	10		
PHENANTHRENE	<11	ug/L	1.1	11	10		
ANTHRACENE	<11	ug/L	1.1	11	10		
FLUORANTHENE	<11	ug/L	1.1	11	10		
YRENE	<11	ug/L	1.1	11	10		
_ENZO[A]ANTHRACENE	<11	ug/L	1.1	11	10		
CHRYSENE	<11	ug/L	1.1	11	10		
BENZO[B]FLUORANTHENE	<11	ug/L	1.1	11	10		
BENZO[K]FLUORANTHENE	<11	ug/L	1.1	11	10		
BENZO[A]PYRENE	<11	ug/L	1.1	11	10		
INDENO[1,2,3-CD]PYRENE	<11	ug/L	1.1	11	10		
DIBENZ[A,HJANTHRACENE	<11	ug/L	1.1	11	10		
BENZO[G,H,I]PERYLENE	<11	ug/L	1.1	11	10		
NITROBENZENE-D5	103	%	1.1				
2-FLUOROBIPHENYL	101	%	1.1				
TERPHENYL-D14	97	%	1.1				

Report Notes:

J, A-1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 27GLX0401

Matrix: WATER

SDG Name: WP4075

Percent Solids: 0.00

Lab Sample ID: WP4075-018

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	107			P	1
7440-36-0	ANTIMONY	8.2			P	1
7440-38-2	ARSENIC	3.8	В		P	1
7440-39-3	BARIUM	19.9			P	1
7440-41-7	BERYLLIUM	0.33	U		P	1
7440-43-9	CADMIUM	1,94	U		P	1
7440-70-2	CALCIUM	67200			P	i
7440-47-3	CHROMIUM	4.31	U		P	1
7440-48-4	COBALT	4.45	U		P	1
7440-50-8	COPPER	1.62	U		P	1
7439-89-6	IRON	198			P	1
7439-92-1	LEAD	1.09	U		P	1
7439-95-4	MAGNESIUM	1680			P	1
7439 - 96-5	MANGANESE	26.0			P	1
7439-97-6	MERCURY	0.02	U		CV	1
7440-02-0	NICKEL	13.21	U		P	1
7440-09-7	POTASSIUM	5680			P	1
7782-49 - 2	SELENIUM	2.57	U		P	1
7440-22-4	SILVER	2,54	U		P	1
7440-23-5	SODIUM	71800			P	1
7440-28-0	THALLIUM	4.49	U		P	1
7440-62 - 2	VANADIUM	3.58	U		P	1
7440-66-6	ZINC	23.4	В		P	1

Comments:

Paul Calligan Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-19

SDG:

WP4075

Report Date:

10/15/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/28/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX4D01	AQ	9,	/23/99	9/25/99	9/28/99	НМР	5030	HMP
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE			ug/L	1.0	5	5	•	· · · · · · · · · · · · · · · · · · ·
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	•	104	%	1.0				
'-DICHLOROETHANE-D4	1	106	%	1.0				
₩OLUENE-D8	•	103	%	1.0				
P-BROMOFLUOROBENZENE	1	102	%	1.0				

Report Notes:

Client: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-3

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/4/99

ample Description Matrix		Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX4D01	ΑQ	9/23/99	9/24/99	9/28/99	DS	SW3510	KRT
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<11	l ug/L	1.1	11	10		
2-METHYLNAPHTHALENE	<11	1 ug/L	1.1	11	10		
ACENAPHTHYLENE	<11	l ug/L	1.1	11	10		
ACENAPHTHENE	18	ug/L	1.1	11	10		
FLUORENE	16	ug/L	1.1	11	10		
PHENANTHRENE	<11	1 ug/L	1.1	11	10		
ANTHRACENE	<1	1 ug/L	1.1	11	10		
FLUORANTHENE	<11	1 ug/L	1.1	11	10		
PYRENE	<11	l ug/L	1.1	11	10		
BENZO[A]ANTHRACENE	<11	1 ug/L	1.1	11	10		
CHRYSENE	<1	1 ug/L	1.1	11	10		
BENZO[B]FLUORANTHENE	<11	t ug/L	1.1	11	10		
BENZO[K]FLUORANTHENE	<1 1	1 ug/L	1.1	11	10		
BENZO[A]PYRENE	<11	1 ug/L	1.1	11	10		
INDENO[1,2,3-CD]PYRENE	<11	1 ug/L	1.1	11	10		
DIBENZ{A,H}ANTHRACENE	<11	1 ug/L	1.1	11	10		
BENZO{G,H,I]PERYLENE	<1	t ug/L	1.1	11	10		
NITROBENZENE-D5	84	%	1,1				
2-FLUOROBIPHENYL	91	%	1.1				
TERPHENYL-D14	102	2%	· 1.1				

Report Notes:

A-1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: 27GLX4D01

Matrix: WATER SDG Name: WP4075

Percent Solids: 0.00 Lab Sample ID: WP4075-019

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	38.0	В		P	1
7440-36-0	ANTIMONY	1.81	U		P	1
7440-38-2	ARSENIC	31.8			P	1
7440-39-3	BARIUM	65.4			P	1
7440-41-7	BERYLLIUM	0.33	U		P	1
7440-43-9	CADMIUM	1.94	U		P	1
7440-70-2	CALCIUM	34600			P	1
7440-47-3	CHROMIUM	4.31	U		P	1
7440-48-4	COBALT	4.45	U		P	1
7440 - 50-8	COPPER	1.7	В		P	1
7439-89-6	IRON	19000			P	1
7439-92-1	LEAD	1.09	U		P	1
7439-95-4	MAGNESIUM	24700			P	1
7439-96-5	MANGANESE	528			P	1
7439-97-6	MERCURY	0.02	U		CV	l
7440-02-0	NICKEL	13.21	U		P	1
7440-09-7	POTASSIUM	10700			P	1
7782-49-2	SELENIUM	2.57	U		P	1
7440-22-4	SILVER	2.54	U		P	1
7440-23-5	SODIUM	254000			P	l
7440-28-0	THALLIUM	4.49	U		P	I
7440-62-2	VANADIUM	3.58	U		P	1
7440-66 - 6	ZINC	10.5	В		P	1

Comments:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-16

SDG:

WP4075

Report Date:

10/15/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/28/99

Sample Description	n Matrix Sampled Date Re		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
27GLX0501		AQ 9/23/99		9/25/99	9/28/99	НМР	5030	НМР
Compound	R	esult	Units	DF	Sample PQL	Method PQL		_
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5'	5		
DIBROMOFLUOROMETHANE	•	105	%	1.0				
1,2-DICHLOROETHANE-D4		106	%	1.0				
TOLUENE-D8		102	%	1.0				
P-BROMOFLUOROBENZENE		101	%	1.0				

Report Notes:

Paul Calligan Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-6

SDG:

WP4075

Report Date: PO No.:

10/9/99

Project:

N7912-P99264

% Solids:

CTO #68 N/A

Method:

EPA 8270

Date Analyzed: 10/5/99

Sample Description	Matrix Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX0501	AQ 9/23/99		9/24/99	9/28/99	DS	SW3510	KRT
Сотроили	Res	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	l1 ug/L	1.1	11	10		
2-METHYLNAPHTHALENE	<1	l1 ug/L	1.1	11	10		
ACENAPHTHYLENE	<1	l1 ug/L	1.1	11	10		
ACENAPHTHENE	<1	11 ug/L	1.1	11 ·	10		
FLUORENE	<1	l1 ug/L	1.1	11	10		
PHENANTHRENE	<1	l1 ug/L	1.1	11	10		
ANTHRACENE	<1	l1 ug/L	1.1	11	10		
FLUORANTHENE	<1	l1 ug/L	1.1	11	10		
*~~RENE	<1	l1 ug/L	1.1	11	10		
:NZO[A]ANTHRACENE	<1	l1 ug/L	1.1	11	10		
CHRYSENE	<1	i1 ug/L	1.1	11	10		
BENZO[B]FLUORANTHENE	<1		1.1	11	10		
BENZO[K]FLUORANTHENE	<1	l1 ug/L	1.1	11	10		
BENZO[A]PYRENE	<1	1 ug/L	1.1	11	10		
INDENO[1,2,3-CD]PYRENE	<1	1 ug/L	1.1	11	10		
DIBENZ[A,H]ANTHRACENE	<1	l1 ug/L	1.1	11	10		
BENZO[G,H,I]PERYLENE	<1	1 ug/L	1.1	11	10		
NITROBENZENE-D5	6		1.1				
2-FLUOROBIPHENYL	6	6 %	1.1				
TERPHENYL-D14	7	6 %	1,1				

Report Notes:

A-1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 27GLX0501

Matrix: WATER

SDG Name:

WP4075

Percent Solids: 0.00

Lab Sample ID: WP4075-016

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	
7429-90-5	ALUMINUM	236			P	1	
7440-36-0	ANTIMONY	1.81	U		P	1	
7440-38-2	ARSENIC	16.3			P	1	
7440-39-3	BARIUM	17.0			P	1	
7440-41-7	BERYLLIUM	0.33	U		P	1	
7440-43-9	CADMIUM	1.94	U		P	1	
7440-70-2	CALCIUM	96800			P	I	
7440-47-3	CHROMIUM	4.31	U		P	I	
7440-48-4	COBALT	4.45	U		P	1	
7440-50-8	COPPER	3.4	В		P	1	
7439-89-6	IRON	5600			P	1	
7439-92-1	LEAD	4.9	В		P	1	
7439-95-4	MAGNESIUM	6910			P	1	
7439-96-5	MANGANESE	814			P	i	
7439-97-6	MERCURY	0.02	U		CV	1	
7440-02-0	NICKEL	13.21	U		P	1	
7440-09-7	POTASSIUM	10200			P	1	
7782-49-2	SELENIUM	2.57	U		P	1	
7440-22-4	SILVER	2.54	U		P	1	
7440-23-5	SODIUM	17700			P	1	
7440-28-0	THALLIUM	4.49	U		P	1	
7440-62-2	VANADIUM	3.58	ប		P	1	
7440-66-6	ZINC	12.4	В		P	1	

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-4075-6 Report Date: 10/27/99

PO No. : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 21

SAMPLE DESCRIPTION	EAM	RIX		SAMPLED 1	BY	SAMPLED D	ATE	RECEIVED
27GLX0501	Aqu	eous		CLIENT		09/23/9	9	09/24/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	<0.050 92.	mg/L mg/L	1.0 10		353.2 375.4	09/24/99 10/12/99	KW KW	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/27/99

LJO/baeajc(dw)/msm PI24NOW2

CC: MS. LEE LECK
TETRATECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

ORGANICS ANALYSIS DATA SHEET

27GLX0501 EPA SAMPLE NO.

Lab Name: ENSR	Contract:	WP4075-16(<i>i</i>	A)
Lab Code:	Case No.;	SAS NO.: SDG NO.: _	
Matrix: (soil/water)	_water	Lab Sample ID: 990181-2	
Sample wt / vol: 32.	5 ml (g/ml)	Lab File ID:KTH_015	_
Level: (low/med)	_ low	Date Received: 9/28/99	
% Moisture: NA		Date Analyzed:10/5/99	
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor:11	
Soil Extract Volume:	NA (μl)	Soil Aliquot Volume: NA	_ (µl)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-82-8	Methane	450	

Client:

Paul Calligan Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassae, FL 32308

Proj, ID: CNC CHARLESTON

Lab Number:

WP4075-42

SDG:

WP4075

Report Date: PO No. :

10/15/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/28/99

Sample Description	Matrix	Matrix Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX0701	AQ	8/	23/99	9/25/99	9/28/99	HMP	5030	НМР
Compound	R	esult	Units	DF	Sample PQ <u>t</u>	Method PQL		
BENZENE		< 5	ug/L	1.0	5	5	· · · · · ·	
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1,0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1,0	5	5		
DIBROMOFLUOROMETHANE	•	100	%	1.0				
1,2-DICHLOROETHANE-D4		103	%	1.0				
TOLUENE-D8		9 8	%	1.0				
P-BROMOFLUOROBENZENE		97	%	1.0				

Report Notes:

Client: Paul

Paul Calligan Tetra Tech NUS

1401 Oven Park Dr. Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4075-10

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/5/99

Sample Description	Matrix Sa	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
27GLX0701	AQ	9/23/99	9/24/99	9/28/99	DS	SW3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<11	ug/L	1.1	11	10		
2-METHYLNAPHTHALENE	<11	ug/L	1.1	11	10		
ACENAPHTHYLENE	<11	ug/L	1.1	11	10		
ACENAPHTHENE	32	ug/L	1.1	11	10		
FLUORENE	19	ug/L	1.1	11	10		
PHENANTHRENE	J10	ug/L	1.1	11	10		
ANTHRACENE	<11	ug/L	1.1	11	10		
FLUORANTHENE	<11	ug/L	1.1	11	10		
PYRENE	<11	ug/L	1.1	11	10		
BENZO[A]ANTHRACENE	<11	ug/L	1.1	11	10		
CHRYSENE	<11	ug/L	1.1	11	10		
BENZO[B]FLUORANTHENE	<11	ug/L	1.1	11	10		
BENZO[K]FLUORANTHENE	<11	ug/L	1.1	11	10		
BENZO[A]PYRENE	<11	ug/L	1.1	11	10		
INDENO[1,2,3-CD]PYRENE	<11	ug/L	1.1	11	10		
DIBENZ[A,H]ANTHRACENE	<11	ug/L	1.1	11	10		
BENZO[G,H,I]PERYLENE	<11	ug/L	1.1	11	10		
NITROBENZENE-D5	65	%	1.1				
2-FLUOROBIPHENYL	68	%	1.1				
TERPHENYL-D14	83	%	1.1				

Report Notes:

J, A-1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: 27GLX0701

Matrix: WATER SDG Name: WP4075

Percent Solids: 0.00 Lab Sample 1D: WP4075-010

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	77.4	В		P	1
7440-36-0	ANTIMONY	1.81	U		P	1
7440-38-2	ARSENIC	4.3	В		P	1
7440-39-3	BARIUM	80.3			P	1
7440-41-7	BERYLLIUM	0.33	U		P	1
7440-43-9	CADMIUM	1.94	U		P	1
7440-70-2	CALCIUM	77700			P	Ì
7440-47-3	CHROMIUM	4.31	U		P	1
7440-48-4	COBALT	4.45	U		P	1
7440-50-8	COPPER	2.5	В		P	1
7439-89-6	IRON	3220			P	1
7439-92-1	LEAD	2.2	В		P	1
7439-95-4	MAGNESIUM	13000			P	1
7439-96-5	MANGANESE	279			P	1
7439-97-6	MERCURY	0.02	U		CV	1
7440-02-0	NICKEL	13.21	U		P	1
7440-09-7	POTASSIUM	15000			P	1
7782-49-2	SELENIUM	2.57	U		P	1
7440-22-4	SILVER	2.54	U		P	1
7440-23-5	SODIUM	45800			P	1
7440-28-0	THALLIUM	4.49	U		P	1
7440-62-2	VANADIÚM	3.58	U		P	1
7440-66-6	ZINC	36.4			P	1

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-4075-10 Report Date: 10/27/99

PO No. : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 3 of 21

SAMPLE DESCRIPTION	<u>r</u> am	TRIX		SAMPLED I	BY	SAMPLED I	ATE	RECEIVED
27GLX0701	Acqu	1eous		CLIENT		09/23/9	9	09/24/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	<0.050 <1.0	mg/L	1.0		353.2 375.4	09/24/99 10/11/99	KW CF	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/27/99

LJO/baeajc(dw)/msm P124NOW2 CC: MS. LEE LECK TETRATECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

ORGANICS ANALYSIS DATA SHEET

27GLX0701 EPA SAMPLE NO.

Lab Name:	ENSR	_ Contract:	<u> </u>	WP4075-42(A)
Lab Code:	Case N	lo.:	_ SAS NO.:	SDG NO.: _	-
Matrix: (soil/water)) water	_	Lab Sample ID:	990181-4	
Sample wt / vol:	32.5 ml (g/ml)	Lab File ID:K	TH_017	
Level: (low/med)_	low	_	Date Received:_	9/28/99	
% Moisture:	NA		Date Analyzed:_	_10/5/99	
GC Column: _ Car	boxen 1004 OD:	1/16"	Dilution Factor:_	1	
Soil Extract Volume	e: NA (µ	1)	Soil Aliquot Volu	me: NA	_ (µl)
CAS NO.	COMPOUND)	CONCENTRATI (µg/L or PPMv)		Q
74-82-8	Methane		5400		E

Lab Name: ENSR _	Contract:	WP4075-42(A)	D
Lab Code:	Case No.:	SAS NO.: SDG NO.:	
Matrix: (soil/water)	water	Lab Sampte ID: 990181-4 DIL	
Sample wt / vol: 32.5	ml (g/mi)	Lab File ID: KTH_019	-
Level: (low/med)	low	Date Received:9/28/99	
% Moisture: NA		Date Analyzed:10/5/99	_
GC Column: _ Carboxen 1	004 OD: 1/16"	Dilution Factor: 144	
Soil Extract Volume:	_NA(lμl)	Soil Aliquot Volume:NA(µI)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-82-8	Methane	8800	D

'ient:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;092899

SDG:

WP4075

Report Date:

10/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed:

10/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;092899	AQ	•	-	9/28/99	DS	SW3510	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	0 ug/L	1.0	10	10		-
2-METHYLNAPHTHALENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHYLENE	<1	0 ug/L	1.0	10	10.		
ACENAPHTHENE	<1	0 ug/L	1.0	10	10		
FLUORENE	<1	0 ug/L	1.0	10	10		
PHENANTHRENE	<1	0 ug/L	1.0	10	10		
ANTHRACENE	<1	0 ug/L	1.0	10	10		
FLUORANTHENE	<1	0 ug/L	1.0	10	10		
YRENE	<1	0 ug/L	1.0	10	10		
_ENZO[A]ANTHRACENE	<1	0 ug/L	1.0	10	10		
CHRYSENE	<1	0 ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<1	_	1.0	10	10		
BENZO[A]PYRENE	<1	0 ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<1	0 ug/L	1.0	10	10		
DIBENZIA, HJANTHRACENE	<1	-	. 1.0	10	10		
BENZO[G,H,I]PERYLENE	<1	-	1.0	10	10		
NITROBENZENE-D5	8	_	1.0				
2-FLUOROBIPHENYL	96		1.0				
TERPHENYL-D14	11	4 %	1.0				

Report Notes:

Client: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKU28A

SDG:

WP4075

Report Date:

10/15/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method: Date Analyzed: 9/28/99

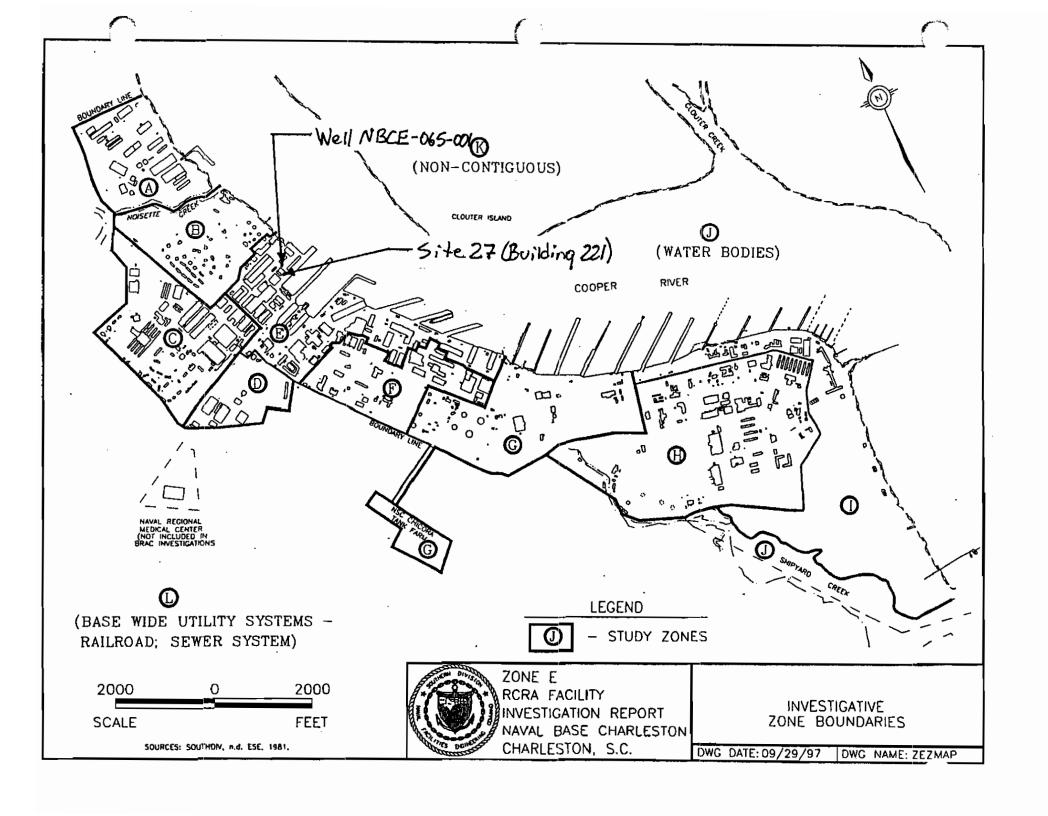
SW8260

Sample Description	Matrix	Samj	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKU28A	AQ		-	-	9/28/99	HMP	5030	НМР
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		101	%	1.0				
1,2-DICHLOROETHANE-D4		101	%	1.0				
TOLUENE-D8		100	%	1.0				
P-BROMOFLUOROBENZENE		99	%	1.0				

Report Notes:

Katahdin Katahdin 340 County Road No. 5 P.O. Box 720 Westbrook, ME 04092

CHAIN of CUSTODY

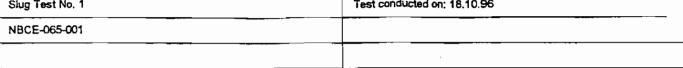

	207) 874-2400 (207) 775-4029	<u>.</u>					PLEASE	PRINT	IN PEN	ı	Pag	le 	of 1
NUS			Contai	ot Call	المما	<u> </u>	Phone #	RFH	-493	Fa)	k #)		
Address NH-21 Ave	#	City 1	i ()	n-cen necle	47	5	tate S			Zip Code	_ 		
Purchase Order #		j. Name / N	۸۰.ک ۲۰						Katahdii	n Quote :	#		
Bill (if different than above)				ddress/	<u> </u>	-17AG	W.C.3. >	er Pie	4				
Sampler (Print / Sign)	ic Plist			7/1	7)			Copie	s To:				
LAB USE ONLY WORK ORDE	R#: WP4075			<i></i>				PRESER	VATIVES	•			
KATAHDIN PI	ROJECT MANAGER	//		Filt. DYEIN	Filt. DY 25 N	Filt. □Y ∑ N	Filt. DY B N	Filt. □Y Ø N	Filt. DYDN	Fitt. □Y□N	Filt. □Y□N	Filt. OYON	Filt V 🗆 Y 🗅
REMARKS:				× 8		Ì							
SHIPPING INFO:	☐ UPS	C CLIE	NT.	BTEX	70								
AIRBILL NO:	IK 🗆 INTACT	□ мот	INTACT	1 1) W	A	S	9					
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	\$260 E08.N	Methone	PAHS	metales	Anions					
27GLM\$1\$1	9-25/1050	GW		3	3	7	1	1	!		1	<u> </u>	1
27GLXØ3ØI	9-23/1010			3		3	1			<u>-</u>			†
27GLX4441	9-23/1010		 	3		<u>۔</u>	\						
CIGLX4041	9-25/1012	 -		3	L	3	1						
276LX45\$1	9-25/1100			3	3	2	1	1		_			
マフロト×タフタ手」				3	3	2	1	1					
27GLMBIAD	9-23/-			3		ā	1	THE WAR	5				
28GLM4341	9-23/10H5			3	M	9	18	1					-
SEGLMASAI	9-23/1640			3	M	a	145	1		,			
SECTWOSIQUE	9-23/-	V	_	N	N.	a	1	18	7				
987L&XIXI	4-23/			\$						1			
	/										_		
	/									_			
	/						6	- (0	0-6M	(OP)	205	3	
	/						T 1			4	055		
	/												
OMMENTS													
Thumpy shed By: (Signeture) Da	ate / Time Rece	ived By: (S	Signatur	a) F	lelinguis!	ned Bv: /	Signature) D:	ate / Ti	me F	Recoived I	By: (Sign	natur
at Mill		<u>4-E</u>	_	83	455	252	060		ate / Ti		\$7	\mathcal{T}	
Relinquished By: (Signature) Da	ate / Time Recei	ived By: (S		e) F	Relinquis	ned By: (Signature) Da	ate / Ti	me F	Received	ax: (Sign	natur
				_		 		_		— —			

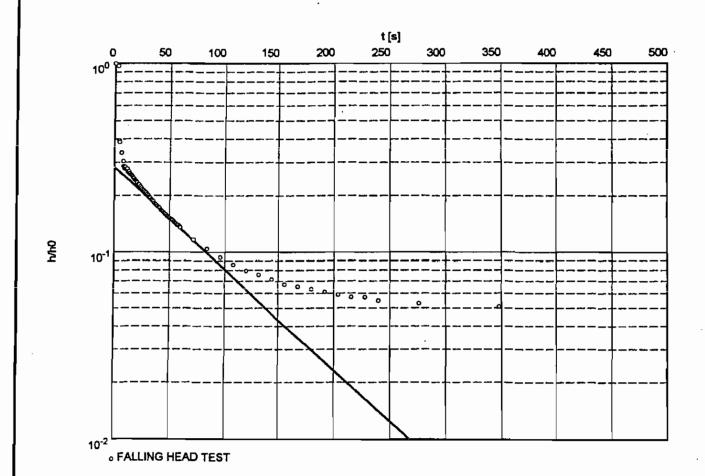
Katahdin 340 County Road No. 5 P.O. Box 720 Westbrook, ME 04092

CHAIN of CUSTODY

A		7) 874-2400 17) 775-402 9			₹°01	7/	·	PLEASE	PRINT	IN PEN	i	Pag	ge	of
Clie		\ i*		Contact		_ ,,		hone #			Fa: (x #		
Add	dress as of our	Mary Commercial Control	City	<u> </u>	1-1-1	<u>;</u>) sı	ate			Zip Code	·		7
Pu	rchase Order #	Proj. I	Name / N	0.						Katahdir	n Quote	#		
Bill	(if different than above)			Ad	dress									
Sar	mpler (Print / Sign)						-		Copie	es To:				
L	AB USE ONLY WORK ORDER	#:	- *				Ė	ANALYSI I		ONTAIN VATIVES		E		
		NECT MANAGER			Filt.	Filt. OYON	Filt. DYDN	Filt. □Y□N	Filt. OYON	Filt. □Y□N	Filt.	Filt.	Filt.	Filt.
HE	MARKS: SILL LO E AS	ù b' (; a :	:		i			;	į	:
	IIPPING INFO: 📮 FED EX	O UPS	CLIEN	IT					:				:	
	RBILL NO:	☐ INTACT	□ NOT II	NTACT	Loed 12 Ed		:	: :			:			
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	bissolved Mell		Lab	1D5	!	san	ple.	IDS		:
	WP4075-15	9.23.91 1050	AQ	3	X			49.	위-			roa go		
	WF 4075-16	1/1100	l	į	Χ				<i>(</i> • 3	67		(850		
	WP 4075- 29	9.24.99 0840			Χ				, , ,	13	rte	28)		
	LY 4075-42	922.98/1126			×		_		'J	2791	χά	701)		
	WF 4035 - 43	1/1645			×				- <	(5)	40	28)		
	UK 4032 - 44	1/1640	\checkmark	\downarrow	Χ				ير) -	(5	ife	28		
	, , , , , , , , , , , , , , , , , , , ,	/												
		/												
		/												
		/												
		/												
		/						l.						
		/												
		/											•	
		/												
		/						ķ						
COI	MMENTS QC-エ+ い/i	langative	<i>Pp</i> (KA50	 VÜF C	<i>'</i> be	3)	Resu	Ho Z	يدت.	0.2	2.0	7 9	
<u>Z.</u>	minist 72	19160	ved By: (-		(Signature	9	ate / Ti ate / Ti	<u> </u>	Received Received	1/1/2	7
											- -			

APPENDIX E AQUIFER CHARACTERIZATION GRAPHS

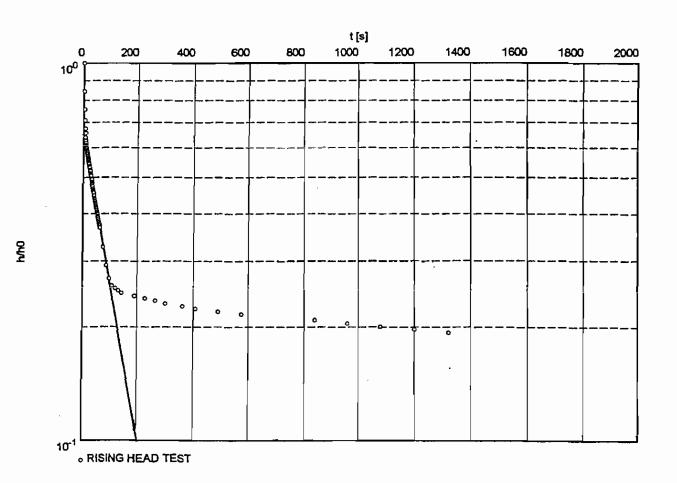

EnSafe/Allen & Project: ZONE E - Naval Base Charles		Monitoring Well No	
Location: Charleston, SC		Surface Elevation: 7.1 feet ms/	
Started at 1000 on 12-7-95		TOC Elevation: 6.92 feet msl	
Completed at 1150 on 12-7-95		Depth to Groundwater: 2.78 feet TO	C Measured: 3/13/96
Drilling Method: 4.25" ID (7.5" 00) HSA	with solit spoon	Groundwater Elevation: 4.14 feet ms	
Drilling Company: Atlantic Drilling (SC or		Total Well Depth: 12.5 feet bgs	
Geologist: B. Blythe		Well Screen: 25 to 115 feet bgs	-
DEPTH IN FEET LITHOLOGIC SAMPLE ANALYTICAL SAMPLE SAMPLE SAMPLE NO. X RECOVERY PID (ppm) GRAMHIC LOG	SEOFO SEOFO	VEIC DESCRIPTION	WELL DIAGRAM
5- 1 60 0 1 1 60 0 1 1 1 1 1 1 1 1 1 1 1 1	Surface conditions: SM Sand: light brown, g Clay: dark gray-bla soft, moist to wet, lMarsh clay. Clay: Marsh clay as PT Peat: dark brown wi and grass fibers, so	gravelly, muddy, dry to moist. 28 ack, high organic content, fat, low plasticity, H ₂ S odor 18 th light brown root material oft, moist, H ₂ S odor.	10 PVC, 0.01 slot screen PVC Riser


EnSafe/Allen & Hoshall
935 Houston Northcutt Blvd. Suite 113
Mt. Pleasant, SC 29464
(803)-884-0029

Slug Test No. 1

Slug/bail test analysis
BOUWER-RICE's method

Project ZONE E-NAVBASE CHARLESTON
Evaluated by: TKK
Date: 13.11.96



Hydraulic conductivity [ft/s]: 4.42 x 10⁻⁴

Hydraulic conductivity [ft/day]: 38.2

L = 1.7 ft b = 10.4 ft D = 10.4 ft (full penetration)

slug/bail test analysis BOUWER-RICE's method	Appendix C, Page 1 Project: ZONE ENA	AVBASE CHARLESTON
	Evaluated by: TKK	Date: 13,11.96
Test conduc	oted on: 18.10.96	
	BOUWER-RICE's method	BOUWER-RICE's method Project: ZONE ENA

Hydraulic conductivity [ft/s]: 3,23 x 10⁻⁴

Hydraulic conductivity [ft/day]: 27.9

L = 1.7 ft

b = 10.4 ft

D = 10.4 ft (full penetration)

APPENDIX F RBCA CALCULATIONS

Construction Worker Dermai RBSLs

	Kow	MW	Кр	В	τ _{event}	c	b	t*	tevent	DAevent
			cm/hr	unitless	hr/event			hr	hr/event	
Benzene	199.5262315	78.1	0.11551543	0.392637855	2.87E-01	6.32E-01	6.03E-01	6.90E-01	1	eq 3.3
Toluene	537.0317964	92.1	0.259561335	0.958068292	3.44E-01	1.13E+00	1.31E+00	1.33E+00	1	eq 3.2
Ethylbenzene	1412.537545	106.2	0.569219802	2.256154884	4.13E-01	2.36E+00	4.39E+00	1.70E+00	1	eq 3.2
Xylene*	1584.893192	106.2	0.638675123	2.531447415	4.13E-01	2.63E+00	5.31E+00	1.72E+00	1	eq 3.2
Naphthalene	1995.262315	128.2	0.605452393	2.636638957	5.48E-01	2.73E+00	5.69E+00	2.29E+00	1	eq 3,2
MTBE	15.136	88.15	0.00769788	0.027797704	3.27E-01	3.52E-01	3.20E-01	7.85E-01	1	eq 3.3
Chrysene	457088	228.3	0.49	2.847578386	1.99E+00	2.93E+00	6,49E+00	8.39E+00	1	eq 3.2
Chromium VI								<u> </u>	1	
Lead										

	BW	AT	ΕV	ΕD	EF	SA	CSF derm	Rfd derm	Target	RBSL	RBSL
	kg	day	events/day	yrs	days/yr	cm ²	(mg/kg-day) ⁻¹	mg/kg-day	Risk or HQ	mg/L	mg/L
Benzene	70	25550	1	1	90	4500	2.99E-02	NA	1.00E-06	-	8.52E-01
Toluene	70	365	1	1	90	4500	NA.	1.60E-01	1.0	2.40E+01	
Ethylbenzene	70	365	1	1	90	4500	NA	9.70E-02	1.0	6.05E+00	
Xylene*	70	365	1	1	90	4500	NA	1.84E+00	1.0	1.02E+02	
Naphthalene	70	365	1	1	90	4500	NA.	3.20E-02	1.0	1.63E+00	
MTBE	70	365	1	1	90	4500	NA	5.00E-03	1.0	2.59E+01	
Chrysene	70	25550	1	1	90	4500	1.46E-02	NA	1.00E-06		3.23E-01
Chromium VI	70	365	1	1	90	4500		7.50E-05	1.0	2.37E+00	
Lead											

^{*} Kow and MW values for xylene, m-

There are no toxicity values for lead; therefore, a dermal RBSL for a construction worker cannot be calculated.

Prepared By: Grea Swanson
(G, M. Doff)

Reviewed By: Mukey

Construction Worker Incidental Ingestion RBSLs

	BW	AT	IR	ED	EF	Target	CSF oral	Rfd oral	RBSL
	kg	day	L/day	yrs	days/yr	Risk or HQ			mg/L
Benzene	70	25550	0.01	1	90	1.00E-06	2.90E-02	NA	6.85E+01
Toluene	70	365	0.01	1	90	1.0	NA	2.00E-01	5677.778
Ethylbenzene	70	365	0.01	1	90	1.0	NA	1.00E-01	2838.889
Xylene	70	365	0.01	1	90	1.0	NA	2.00E+00	56777.78
Naphthalene	70	365	0.01	1	90	1.0	NA	4.00E-02	1135.556
MTBE	70	365	0.01	1	90	1.0	NA	5.00E-03	141.9444
Chrysene	70	25550	0.01	1	90	1.00E-06	7.30E-03	NA	2.72E+02
ChromiumVI	70	365	0.01	1	90	1	NA	3.00E-03	1.0
Lead									

^{*} No CSF oral or Rfd oral are available for Lead, therefore the incidental ingestion RBSL for a construction worker cannot be calculated.

Prepared By:

Reviewed By: Maken I

Construction Worker Inhalation RBSLs

Chemical	Dair	D'erater	H	0	e	0	. e	64	Deff-cap	Deff-s
	cm²/s	crn ² /s	em³/cm³	em³/cm³	em³/cm³	cm³/cm³	em³/em³	cm³/cm³	cm²/s	cm²/s
Benzene	0.093	1.10E-05	2,26E-01	0.038	0.342	0.33	0.15	0.48	1.35E-05	1.01E-02
Toluene	0.065	9.40E-08	3.01E-01	0.038	0.342	0,33	0.15	0.48	1.07E-05	9,20E-03
Ethylbenzene	0.676	8.5()E-06	2.80E-01	0.038	0.342	0.33	0.15	0.48	9.85E-Q8	8.22E-03
Xylenes	0.072	8.50E-06	2.78E-01	0.038	0.342	0.33	9,15	0.48	9.55E-06	7.79E-03
Naphthalene	0.072	9.40E-06	2.00E-03	0.038	0.342	0.33	0.15	0.48	5.79E-04	7.836-03
MTBE	0.102	1,09E-05	4,16E-02	0,038	0.342	0.33	0.15	0.48	3.90E-05	1.10E-02
Chrysene	2,48E-02	6.21E-06	3,02E-18	0.038	0.342	0.33	0.15	0.48	2.51[+11	1.81E+10
ChromiumVI				0.038	0.342	0.33	0.15	0,48		
Lead							1			

Chemical	hcap	hv	Deff-ws	Unir	ž sár	Lgw	w	VFwamb	TR (care)	Ht (none)
	, cm	C TTD	cm²/s	cm/sec	can	cm	CFR_	mg/m³/mg/L	_ ::	
Benzene	5	117	3.18E-04	225	200	122	1500	1.97E-05	1,00E-06	NA.
Toluene	5	117	2.54E-04	725	200	122	1500	2.09E-05	NA.	1
Ethylbenzene	5	117	2.34E-04	725	200	122	1500	1.795-05	NA.	1
Cylenes	5	117	2,27E-04	225	200	122	1500	1.72E-05	NA.	1
Vaphthalene	5	117	5.17E-03	225	200	122	1500_	2.83E-06	NA.	1
MTBE	5	117	8.79E-04	225	200	122	1500	9.991:-06	NA.	1
Chrysene	5	117	1,67E+10	225	200	122	1500	3.02(5-15	1.00E-06	NA.
ChromiumVI										
end										

Chemical	TR (care)	Hi (nonc)	BWaduk	AT	Sfi (tarc)	RfD (nonc)	IR air	E F	ED	RBSLair	н	RBSLWMer
			kp	\T	[mg/kg-day] 1	[mg/kg-dry]	m³/day	day/yr	YT	mg(m²	cm²/cm²	mg/L
Benzene	1 00E-06	NA.	70	70	2.90E-02	NA	20 .	90	1	3.43E-02	2.26E-01	0.15
Toluene	NA.	1	70	i	NA	1.14E-01	20	90	1	1 62E+00	3.01E-01	5.38
Ethylbenzane	NA	1	70		NA.	2.86E-01	20	90	1	4.06€+00	2.80E-01	14.50
Xylenes	NA	1	70	7	NA.	NA'	20	90	1	NA*	2.78E-01	NA*
Naphthalene	NA	1	70	1	NA.	3.71E-04	20	90	1	5.27E-03	2,00€-03	2.63
MTBE	NA	1	70	1	NA.	8.60E-01	20	90	1	1.22E+01	4.18E-02	293.443
Chrysene	1 00E-08	NA.	70	70	1,46E-Q2	NA NA	20	90	1	5.81E-02	3.02E-16	2.25E+18
Chromium VI												NA*
Lead									•			NA*

^{*}No inhelation reference dose is available for sylenes, chromium, or lead; therefore, no RBSLs can be encutated.

Properties By Good Swang and

Removed By That Carlow . In The State of the

Minimum Construction Worker RBSLs

	Dermal	Incidental Ingestion	Inhalation	Minimum
	RBSL	RBSL	RBSL	RBSL
	rng/L	mg/L	mg/L	mg/L
Benzene	0.85	68.52	0.15	0.15
Toluene	23.98	5,677.78	5.38	5.38
Ethylbenzene	6.05	2,838.89	14.50	6.05
Xylene	102.33	56,777.78	NA*	102.33
Naphthalene	1.63	1,135.56	2.63	1.63
MTBE	25.92	141.94	293.44	25.92
Chrysene	0.32	272.22	2.25E+16	0.32
Chromium VI	2.37	1.00	NA	2.37
Lead	NA	NA	NA	NA.

NA = Not Available

Prepared By: Gros Guarson.

Reviewed By: Whater.

SITE 27, BUILDING 221, ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted 10-year Migration of Conetituents in Groundwater

Parameter Descriptioner	Umba	Parameter Descriptions:	Units
POE - Paint of Exposure		Pa - Golf Bulk Donolty	yan ³
SSTL - Site-Specific Torget Level	mg/L	f ₀₀ = Freetine Organie Carlson in Soil	g-C/g-soil
SSTL _{ebelot} - Hydronorium Concentration in Phase Source Area proteotive of RBSLs at POE	mg/L	a _x = Langitudinal Dispersistry in x/10	•
SSTL _{COM} = Hydrocurbon Concentration at Compliance Point protective of RBSLs at PDE	mg/L	α _τ = Transverse Dispersistry = α _p /2	-
X _{ros} > x = Distance from Plame Source to POE (plang Conterline)		α ₁ ~ Vertical Dispersivity ~ α ₁ /20	im .
X _{COMP} = x = Dictance from POE to Compliance Point (along Contestine)	m	koc - Organie Carlson Partition Conflicient	ean ³ -H ₄ O/g-C
Y = Source Width (Perpendicular to Flow Direction)	-	k _e = Sall-Water Surption Coefficient	em ³ -H _e O(g-seil
Z = Bource Depth (Perpendicular to Flow Direction in Vertical Plane)	m	V - Pare Wester Valuality	m/seq
K _e = Suturated Hydrania Conductivity	m/eee	R _c = Constituent Returdation Frotor	
l = Groundwater Gradient	em/om	V/R _c = Maximum Transport Rate of Disserved Constituent = (K,)/(6R _c)	m/see
θ = Paresity in Saturated Zone	om³/om³	RBSL = Risk-Based Sereasing Level in Water Provided by SCDHEC (1998)	mg/L

Ditution & Attenuation without Biological Decay

Constituent	X _{POE}	Xeor	Y m	Z	t sec	IK _s m/sec	i m/m	θ m³/c	Ps g/cm²	α _x	Œ _Ŧ	a, m	foc g-C/g-soil	k _{oc} cm²-H ₂ O/g-C	k _D cm³-l+ ₂ O/g-soil	V m/sec	Ro	Cros/Csounce
															I			
Naphthalene	65	19,81224	15	2	3.15E+08	1.17E-04	0.0124	0.47	1,45	1.98	0.66	0.10	1.755-03	1543	2.70026	3,08E-08	0.331	6,892E-01
Lead	420	128.0176	15	2	3.16E+08	1.17E-04	0.0124	0.47	1.45	12.90	4.27	0.84	1.756-03	0		3.08E-06	1.000	2.229€-02
Total Chromium	6 1	15.544.99	15	2	3.15E+08	1.17E-04	0.0124	0.47	1.45	1.55	0.52	0.08	1,76E-03	0	o	3.08E-06	1.000	7.623E-01

Source: South Carolina Department of Health and Environmental Control (SCDIEC) 1998. Risk-Beard Cornective Astion for Patroleum Releases, Buresu of Underground Storage Tank Management.

COMENICO CILUTIONIATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$\frac{C_X}{C_{SOLRCE}} = \frac{1}{2} erfc$	$\frac{\left(x - \frac{vt}{R}\right)}{2\sqrt{\alpha_x \frac{vt}{R}}}$	$ \left \times erf \left[\frac{Y}{4\sqrt{\alpha_1 x}} \right] \times erf \left[\frac{Z}{2\sqrt{\alpha_2 x}} \right] \right $
---	---	--

Constituent	C _{sousce} mg/L	C _x	RBSL mg/L
Naphthalene	0.017	0.010	0.010
Lend	0.875	0.015	0.015
Total Chromium	0.133	0.100	0.100

Prepared By: (Freq 54 grassy)

Reviewed By: Charles Control

SITE 27, BUILDING 221, ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted 20-year Migration of Constituents in Groundwater

Paremeter Descriptions:	Units	Parameter Descriptions:	Unite
PGE = Point of Exposure		p _e = Soil Bulk Density	8/om³
SSTL = Site-Specific Target Level	mg/L	foc = Fraction Organic Carbon in Soil	g-C/g-+oil
BSTL _{SOURCE} - Hydrocarbon Concentration in Plume Source Area protective of RBSLs at POE	mg/L	a _x = Longkadinel Dispersivity = x/10	m
SSTL _{COMP} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE	mg/L	α _γ = Transverse Dispersivity = α _x /3	m
X _{POF} = x = Oirtence from Plume Source to POE (slong Centerline)	m	α_2 = Vertical Dispersivity = $\alpha_{yy}/20$	m
X _{COSF} = x = Distance from POE to Compliance Point (along Centerline)	m	k _{OC} = Drganio Carbon Pautition Coefficient	æm³-H _a O/g-C
Y = Source Width (Perpendicular to Fiov: Direction)	m	k _O = Boll-Water Borption Coefficient	em³-H _e O/g-eo⊪
Z = Source Cepth (Perpendicular to Flow Direction in Vertical Plane)	m	V = Pore Water Velocity	m/ees
K ₆ = Baturated Hydraulio Conductivity	tn/sec	Rc = Constituent Retardetion Feator	
= Groundwater Gradient	em/em	V/R _c = Maximum Transport Rate of Dissolved Constituent = (K,Ji/(8Fi _C)	mieed
8 - Porceity in Saturated Zone	om³/om³	RBSL = Rick-Based Screening Level in Water Provided by SCDHEC (1988)	mg/L

Dilution & Attenuation without Biological Decay

Constituent	X _{POT}	X _{POE}	Y m	Z m	t seo	K _s	l m/m	0 m³/a	Ps g/cm³	a _x m	a.	α, m	foc g-C/g-soil	k _{oe} om³-H ₂ O/g-C	k _a om³-H ₂ O/g-soit	V m/sec	R _c	C _{POE} /C _{MOUNCE}
Naphthalene	65	19.8122	15	2	6.31E+08	1.17E-04	0.0124	0.47	1.45	1,98	0.88	***	1.75E-03	1543	2.70025	3.086-06	9.331	5.89 2E-01
Lead	425	129.542	15	2	6.31E+08	1.17E-04	0.0124	0.47	1.45	12.95	4.32	205	1.756-03	0	0	3.08E-06	1.000	2.177E-02
Total Chromium	51	15.545	15	2	6.31E+08	1.17E-04	0.0124	0.47	1.45	1.55	0.52	***	1.755-03	0	0	3.085.06	1,000	7.523E-01

Source: South Carolina Department of Health and Environmental Control (SCDHEC) 1998. Rick-Based Corrective Action for Patroleum Releases, Bursou of Underground Storage Tenk Management.

DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{\text{SOURCE}}} = \frac{1}{2} erfc \left[\frac{\left(x - \frac{vt}{R_c}\right)}{2\sqrt{\alpha_X \frac{vt}{R_c}}} \right] \times erf \left[\frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[\frac{Z}{2\sqrt{\alpha_Z x}} \right]$$

Prepared By, Greg Sugasin

Constituent	Csource	Cx	RBSL
	mg/L	mg/L	mg/L
Naphthalene	0.017	0.010	0.010
l,e#d	0.675	0.015	0.015
Total Chromium	0.133	0,100	0.100

Reviewed By:

SITE 27, BUILDING 221, ZONE E, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted Time Period to Reach Equilibrium in Groundwater

Parameter Descriptions:	Unke	Parameter Descriptions:	Units
POE - Point of Exposure		pe = Soil Bulk Denuity	g/orn ⁹
68TL = 8ke-Specific Torget Level	rng/L	foc = Fraction Organic Curbon in Soil	g-C/g-eoil
88TL _{EQUEST} = Hydrocarbon Concentration in Plume Source Area protective of RBSLs at POE	reg/L	α _π = Longitudinal Dispensivity = π/10	m
SETL _{COM} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE	mg/L	α _γ = Transverse Dispersivity = α _γ /3	m
X _{POE} = x = Distance from Plume Source to PQE (along Centerline)	m	$\alpha_2 = \text{Vertical Dispersivity} = \alpha_2/20$	m
X _{COMP} = x = Distance from POE to Compliance Point (along Centerline)	m	k _{oC} = Organic Carbon Pentition Coefficient	om ³ -H ₂ O/g-C
Y = Source Width (Perpendicular to Flow Direction)	m	kp = Soil-Water Scrption Coefficient	om ³ -H _E O/g-oali
Z = Source Depth (Perpendicular to Flowr Direction in Vertical Flame)	•	V = Pore Water Velocity	mJ040
Ke = Seturated Hydraulic Conductivity	m/eeq	R _C = Constituent Retardation Factor	
i = Groundwater Gradient	emiom	V/R _C = Maximum Transport Rate of Dissolved Constituent = (K_J)/(6ft _C)	misea
0 = Porcelty in Saturated Zone	om ³ /em ³	RBSL = Rick-Based Screening Level in Water Provided by SCDHEC (1898)	mg/L

Dilution & Attenuation without Biological Devey

Constituent	X _{POE}	X _{roi}	Y m	Z m	t sec	K _€ m/seo	l m/m	θ m³/o	Pe g/om ³	⊄ _X m	α _τ m	a, m	f _{ac} g-C/g-soil	k _{oo} om³-H ₇ O/g-C	k _a _{cm³-H₇O/g-soil}	V m/seo	Rc	C _{POE} /C _{EQUECE}
Naphthelene	85	19,8122	15	2	1.23E+08	1,17E-04	0.0124	0.47	1.46	1.98	0,66	***	1.75E-03	1543	2.70025	3.08E-06	9,331	6.582E-01
Lead	425	129.542	15	2	1,10E+08	1,17E-04	0.0124	0.47	1.45	12.95	4,32	111	1.766-03	0	0	3,08E-06	1.000	2.150E-02
Total Chromium	51	15,545	15	2	1.50£+07	1.17E-04	0.0124	0.47	1.45	1.55	0.52	###	1,766-03	0	0	3.096-06	1.000	7.483E-01

Source: South Cerofine Department of Health and Environmental Centrol (SCDHEC) 1998. Aick-Based Corrective Action for Patroleum Releases. Bureau of Underground Storage Tenk Management.

DOMENICO DILUTION/ATTENUATION NIODEL WITHOUT BIOLOGICAL DECAY

$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc$	$\frac{\left(x - \frac{vt}{Rc}\right)}{2\sqrt{\alpha_x} \frac{vt}{R}}$	$\times erf \left[\frac{Y}{4\sqrt{\alpha_1 \cdot x}} \right]$	$\left \times erf \left[\frac{Z}{2\sqrt{\alpha_z x}} \right] \right $
	$\sqrt{2}\sqrt{\alpha_X}R$		

Constituent	C _{sounce} mg/L	C _X mg/L	RBSL mg/L
Naphthalene	0.017	0.010	0.010
Lead	0.875	0,015	0.015
Total Chromium	0,133	0,100	0.100

Elime to Stat	
E: HITSE ID DIEL	M Y
1	0.000
E0000000000000000000000000000000000000	
E-10000 000 BZM Z@100	
C 1000000000000000000000000000000000000	
5/1000000000000000000000000000000000000	
E_000000000000000000000000000000000000	
	_
000000000000000000000000000000000000000	
 E. Address States (Co.) 65 	
200220000000000000000000000000000000000	
200000000000000000000000000000000000000	
Fig. 1 (100 to 100 6.681	
**************************************	S. 12.
 *** *********************************	
2 10 to 100 to 1	2.32
 2.3 (100) (200) (200) 	
177 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2020 Sept. 2	
The same of the sa	
0.76790000000000000000000000000000000000	620000
 30.200, 000.00000000 	
the four one retrieves	

Chy M. Ay

Reviewed By:

STATE OF MICHIGAN

JOHN ENGLER, Governor

DEPARTMENT OF ENVIRONMENTAL QUALITY

"Better Service for a Better Environment"
HOLLISTER BUILDING, PO BOX 30473, LANSING MI 48909-7973

INTERNET: www.deq.state.mi.us RUSSELL J. HARDING, Director

May 28, 1999

BEPLY TO:

ENVIRONMENTAL RESPONSE DIVIS: KNAPPS CENTRE PO BOX 30426 LANSING MI 48809-7926

TO:

Interested Parties

FROM:

Alan J. Howard, Chief, Environmental Response Division (ERD)

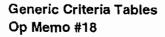
SUBJECT:

Revised Part 201 Operational Memorandum #18 Cleanup Criteria Tables

Attached are the revised Part 201 Operational Memorandum #18 (Op Memo #18) cleanup criteria tables and footnotes. Preceding the tables is a list of criteria changes. Replace the January 1999 criteria tables and footnotes in your hard copy of Op Memo #18 with the attached criteria tables, the footnotes, and the list of changes. The original text and Attachment B of Op Memo #18 have not changed. The revised materials are also available on the Internet via the Environmental Response Division (ERD) homepage (http://www.deq.state.mi.us/erd).

The list of changes preceding the tables is a list of hazardous substances for which criteria have changed since the January 1999 version of Op Memo #18. If the hazardous substances on the list are of interest to you, the actual values can be obtained from the tables. We will continue to provide this listing in future revisions of the criteria tables, which are scheduled every four months. Mark on your calendars that the next published revisions are scheduled for September of this year. Finalization and publication of the Op Memo #18 criteria tables and the Part 201 Training Material Criteria Tables will be synchronized. Any criteria that become available or are revised between the scheduled updates will not be considered official or final until the next publication of the criteria tables. However, anyone inquiring about new or revised criteria prior to finalization/publication of those criteria will be informed of the impending changes. These criteria will be considered draft until published. Decisions related to specific facilities can be made with the draft criteria in mind.

Questions related to the cleanup criteria can be directed to ERD's Toxicology Unit at 517-241-7651.


Attachments

cc: Flint Watt, DWRPD

Harold Fitch, GSD

Paul Zugger, Acting Chief, STD

Jim Sygo, WMD

ATTACHMENT A GROUNDWATER: RESIDENTIAL AND INDUSTRIAL-COMMERCIAL PART 201 GENERIC CLEANUP CRITERIA AND SCREENING LEVELS

May 28, 1999 Page A.6

		#1	#2	#3	#4	#5	#6	#7	#8	#9
Chemicai	Chemicai Abstract Service Number	Residential & Commercial I Drinking Water Criteria	industrial & Commercial II, III & IV Drinking Water Criteria	Groundwater Surface Weter Interface Criteria	Residential & Commercial I Groundwater Volatilization to Indoer Air Inhalation Criteria	industrial & Commercial II, III & IV Groundwater Volatilization to Indoor Air Inhalation Criteria	Groundwater Contact Criterin (AA)	Weter Solubility	Flammability and Explosivity Screening Level	Acute inhalation Screening Level
Formaldehyde	50000	1,300	3,800	120	63,000	3.6E+5	2.9E+7	5.50E+8	- CI	61,000
Formic acid (I,U)	64186	18,000 (M)	29,000	教徒(B) 作為	7,7E+6	1.5E+7	6.2E+8	1.0E+9	6.6E+8	3.5E+8
1-Formylpiperidine	2591868	80	230	NA	ID	ID	ID.	NA	ID ID	ID
Gentian violet	548629	8.5	35	NA	NLV	NLV	4.9E+5	1.00E+6	ID	1D
Glyphosate	1071836	700 (A)	700 (A)	, NA	NLV	NLV	ID	1.16E+7	ID	ID
Heptachlor	76448	0.4 (A)	0.4 (A)	NA	180 (S)	180 (S)	0.71	180	ID	ID
Heptachlor epoxide	1024573	0.2 (A)	0.2 (A)	NA	NLV	NLV	3.1	200	QI	DI
n-Heptane (I)	142825	32,000	92,000	NA NA	2,700 (S)	2,700 (S)	2,700 (S)	2,690	100	2,700 (S)
Hexabromobenzene	87821	10 (M)	10 (M)	DEPOSIT	ID	ID	10 (M)	0.17	ID	1D
Hexachlorobenzene (C-66)	118741	1,0 (A)	1.0 (A)	ID	440	3,000	2.0	6,200	ID	ID
Hexachlorobutadiene (C-46)	87683	11	45	1D	1,600	3,200 (S)	200	3,230	1D	ID
alpha-Hexachlorocyclohexane	319846	0.14	0.55	NA	2,000 (S)	2,000 (S)	16	2,000	QI	1D
beta-Hexachlorocyclohexane	319857	0.47	1.9	NA	NLV	NLV	54	240	OI	ID
Hexachlorocyclopentadiene (C-56)	77474	50 (A)	50 (A)	1088V	ID .	1D	1,400	1,800	ID I	ID
Hexachloroethane	67721	61	250	6.7 (X)	27,000	50,000 (S)	1,500	50,000	ID .	ID
n-Hexane (i)	110543	3,000	8,600	NA	12,000 (S)	12,000 (S)	12,000 (S)	12,000	12,000.(S)	ID
2-Hexanone (I)	591786	1,000	2,900	NA	4.2E+6	8.8E+6	4.8E+6	1.60E+7	ID	ID
Indeno(1,2,3-cd)pyrene {Q}	193395	5.0 (M)	5.0 (M)	GI	NLV	NLV	5.0 (M)	0.022	1D	ID
Iron (B)	7439896	300 (E)	300 (E)	NA	NLV	NLV	D	NA	ID	1D
tsobutyl alcohol (I)	78831	2,300	6,700	NA	7.6E+7 (S)	7.6E+7 (S)	2.4E+7	7.60E+7	ID	1D
Isophorone	78591	900	3,700	今570 (X)-第	NLV	NLV	1.1E+6	1.20E+7	ID	1.2E+7 (S)
Isopropyl alcohol (I)	67630	470	1,300	NA NA	NLV	NLV	1,3E+7	1.0E+9	3.0E+7	1.0E+9 (D)
Isopropyl benzene (1)	98828	800	2,300	ID	56,000 (S)	58,000 (S)	56,000 (S)	56,000	7.15,000	ID
Lead (B)	7439921	4.0 (L)	4.0 {L}	{G,X}	NLV	NLY	ID	NA	ID	ID
Lindane	58899	0.2 (A)	0.2 (A)	0.027	ID	1D	86	6,800	ID	ID
Lithium (B)	7439932	170	350	25	NLV	NLV	8.0E+6	NA .	ID	ID
Magnesium (B)	7439954	4.2E+5	1.2E+6	NA	NLV	NLV	1.0E+9 (D)	NA	ID	ID

FOOTNOTES

- (A) Criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976.
- (B) Background, as defined in Rule 299.5701(c), may be substituted if higher than the calculated cleanup criteria. Background levels may not exceed criteria for all inorganic compounds.
- Value presented is a screening level based on the chemical-specific generic soil saturation concentration (Csat) since the calculated risk-based criterion is greater than Csat. Concentrations greater than Csat are acceptable cleanup criteria for this pathway where a site-specific demonstration indicates that free-phase contaminant is not present. Consult the Generic Soil Saturation Concentrations: Technical Support Document (August 31, 1998) for further guidance on development of site-specific Csat values. Risk-based criteria are available by contacting an ERD toxicologist.
- {D} Calculated criterion exceeds 100%, hence it is reduced to 100% (i.e., 1.0E+9 ppb). Evaluation of free phase contaminant, environmental impacts, adverse aesthetics and acute or local toxicity is required.
- {E} Criterion is the aesthetic drinking water value, as required by Sec. 20120(1)(5).
- {F} Criterion is based on adverse impacts to plant life (i.e., phytotoxicity).
- GSI value is pH or water hardness dependent. The Final Chronic Value (FCV) for the protection of aquatic life must be calculated based on the pH or hardness of the receiving surface water. Where water hardness exceeds 400 mg CaCO₃/L, use 400 mg CaCO₃/L for the FCV calculation. The FCV formula provides values in units of ug/L (ppb). The dissolved to total metal translator (T) is used to convert from a dissolved to a total FCV value. The generic GSI criterion is the lesser of the calculated FCV, the wildlife value (WV) and the surface water human non-drinking water value (HNDV). For these chemicals, the soil GSI protection criteria will be based on the final generic GSI criterion determined by the process described in this footnote. Contact an ERD toxicologist for further guidance.

Chemical	FCV Formula ug/L	FCV Conversion Factor (CF)	Dissolved to Total Metal Translator (T)	WV ug/L	HNDV ug/L
Beryllium	EXP(2.5279*(LnH)-10.7689)	NA NA	NA	NA	1,200
Cadmium	((EXP(0.7852*(LnH)-2.715))*CF(Cd))*T	CF(Cd) = 1.10167-[(LnH)*(0.04184)]	2.1	NA _	130
Chromium (III)	((EXP(0.819*(LnH)+0.6848))*0.86)*T	NA	1.5	NA	9,400
Copper	((EXP(0.8545*(LnH)-1.702))*0.96)*T	NA	1.5	NA	64,000
Lead	((EXP(1.273*(LnH)-3.296))*CF(Pb))*T	CF(Pb) = 1.46203-[(LnH)*(0.14571)]	4.5	NA	190
Manganese	EXP(0.859*(LnH)+1.957)	NA	NA	NA	59,000
Nickel	((EXP(0.846*(LnH)+0.0584))*0.997)*T	NA	1+(0.49*(SS) ^{0.4281})	NA	2.1E+5
Pentachlorophenol	EXP(1.005*(pH)-5.134)	NA NA	NA	NA	2.8
Zinc	((EXP(0.8473*(LnH)+0.884))*0.986)*T	NA NA	2.1	NA	22,000

Where,

EXP(x) = The base of the natural logarithm raised to power x (e^x).

LnH = The natural logarithm of water hardness in mg CaCO₃/L.

SS = Total suspended solids in mg/L

* = The multiplication symbol.

Valence-specific chromium data (Cr III and Cr VI) must be compared to the corresponding valence-specific cleanup criteria. If analytical data are provided for "total" chromium only, then values for Cr VI must be applied as the cleanup criteria. Cr III cleanup criterion for protection of drinking water can only be used at sites where groundwater is prevented from being used as a public water supply, currently and in the future.

(I) Chemical may exhibit the characteristic of ignitability as defined in 40 CFR 261.21. Contact an ERD toxicologist for further direction.